Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 477: 116679, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37689368

RESUMO

Autophagy is a fundamental recycling pathway that enhances cellular resilience, promoting survival. However, this survival mechanism can impede anti-cancer treatment strategies designed to induce cell death. In this study, we identified a novel autophagy inhibitor, Fangchinoline (Fan) isolated from the traditional Chinese medicine Stephania tetrandra. We speculated that when Fan blocks autophagy, cancer cells lose substantial self-preservation abilities during treatment. Firstly, we examined in detail the mechanism through which Fan inhibits autophagy. Specifically, Fan induced a significant increase in autophagosomes, as indicated by GFP-LC3 labeling, confirmed by the up-regulation of LC3-II. The autophagy receptor protein p62 was also up-regulated, suggesting a potential inhibition of autophagy flux. We further ruled out the possibility of fusion barriers between lysosomes and autophagosomes, as confirmed by their co-localization in double fluorescence staining. However, the lysosomal acid environment might be compromised, as suggested by the diminished fluorescence of acidity-sensitive dyes in the lysosomes and the corresponding decrease in mature forms of lysosomal cathepsin. To test the anti-cancer potential of Fan, we combined it with Cisplatin (Cis) or Paclitaxel (PTX) for lung cancer cell treatment. This combined treatment demonstrated a synergistically enhanced killing effect. These promising anti-tumor results were also replicated in a xenografted tumor model. The significance of this research lies in the identification of Fan as a potent autophagy inhibitor and its potential to enhance the efficacy of existing anti-cancer drugs. By unraveling the mechanisms of Fan's action on autophagy and demonstrating its synergistic effect in combination therapies, our study provides valuable insights for developing novel strategies to overcome autophagy-mediated resistance in cancer treatment.

2.
Sci Rep ; 12(1): 10040, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710862

RESUMO

Melanoma is the most lethal type of skin cancer. Despite the breakthroughs in the clinical treatment of melanoma using tumor immunotherapy, many patients do not benefit from these immunotherapies because of multiple immunosuppressive mechanisms. Therefore, there is an urgent need to determine the mechanisms of tumor-immune system interactions and their molecular determinants to improve cancer immunotherapy. In this study, combined analysis of microarray data and single-cell RNA sequencing data revealed the key interactions between immune cells in the melanoma microenvironment. First, differentially expressed genes (DEGs) between normal and malignant tissues were obtained using GEO2R. The DEGs were then subjected to downstream analyses, including enrichment analysis and protein-protein interaction analysis, indicating that these genes were associated with the immune response of melanoma. Then, the GEPIA and TIMER databases were used to verify the differential expression and prognostic significance of hub genes, and the relationship between the hub genes and immune infiltration. In addition, we combined single cell analysis from GSE123139 to identify immune cell types, and validated the expression of the hub genes in these immune cells. Finally, cell-to-cell communication analysis of the proteins encoded by the hub genes and their interactions was performed using CellChat. We found that the CCL5-CCR1, SELPLG-SELL, CXCL10-CXCR3, and CXCL9-CXCR3 pathways might play important roles in the communication between the immune cells in tumor microenvironment. This discovery may reveal the communication basis of immune cells in the tumor microenvironment and provide a new idea for melanoma immunotherapy.


Assuntos
Melanoma , Neoplasias Cutâneas , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/patologia , Prognóstico , Neoplasias Cutâneas/genética , Transcriptoma , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...