Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(30): eado3141, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39047111

RESUMO

Metabolic dysfunction-associated steatohepatitis (MASH) is regulated by complex interplay between the macrophages and surrounding cells in the liver. Here, we show that Atf3 regulates glucose-fatty acid cycle in macrophages attenuates hepatocyte steatosis, and fibrogenesis in hepatic stellate cells (HSCs). Overexpression of Atf3 in macrophages protects against the development of MASH in Western diet-fed mice, whereas Atf3 ablation has the opposite effect. Mechanistically, Atf3 improves the reduction of fatty acid oxidation induced by glucose via forkhead box O1 (FoxO1) and Cd36. Atf3 inhibits FoxO1 activity via blocking Hdac1-mediated FoxO1 deacetylation at K242, K245, and K262 and increases Zdhhc4/5-mediated CD36 palmitoylation at C3, C7, C464, and C466; furthermore, macrophage Atf3 decreases hepatocytes lipogenesis and HSCs activation via retinol binding protein 4 (Rbp4). Anti-Rbp4 can prevent MASH progression that is induced by Atf3 deficiency in macrophages. This study identifies Atf3 as a regulator of glucose-fatty acid cycle. Targeting macrophage Atf3 or Rbp4 may be a plausible therapeutic strategy for MASH.


Assuntos
Fator 3 Ativador da Transcrição , Macrófagos , Animais , Fator 3 Ativador da Transcrição/metabolismo , Fator 3 Ativador da Transcrição/genética , Camundongos , Macrófagos/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/etiologia , Células Estreladas do Fígado/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Fígado/metabolismo , Fígado/patologia , Hepatócitos/metabolismo , Antígenos CD36/metabolismo , Antígenos CD36/genética , Lipogênese , Humanos , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Reprogramação Celular , Camundongos Endogâmicos C57BL , Reprogramação Metabólica
2.
Dev Cell ; 58(21): 2326-2337.e5, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37863040

RESUMO

High-density lipoprotein (HDL) metabolism is regulated by complex interplay between the scavenger receptor group B type 1 (SR-BI) and multiple signaling molecules in the liver. Here, we show that lipocalin-2 (Lcn2) is a key regulator of hepatic SR-BI, HDL metabolism, and atherosclerosis. Overexpression of human Lcn2 in hepatocytes attenuates the development of atherosclerosis via SR-BI in western-diet-fed Ldlr-/- mice, whereas hepatocyte-specific ablation of Lcn2 has the opposite effect. Mechanistically, hepatocyte Lcn2 improves HDL metabolism and alleviates atherogenesis by blocking Nedd4-1-mediated SR-BI ubiquitination at K500 and K508. The Lcn2-improved HDL metabolism is abolished in mice with hepatocyte-specific Nedd4-1 or SR-BI deletion and in SR-BI (K500A/K508A) mutation mice. This study identifies a regulatory axis from Lcn2 to HDL via blocking Nedd4-1-mediated SR-BI ubiquitination and demonstrates that hepatocyte Lcn2 may be a promising target to improve HDL metabolism to treat atherosclerotic cardiovascular diseases.


Assuntos
Aterosclerose , Lipoproteínas HDL , Camundongos , Humanos , Animais , Lipoproteínas HDL/metabolismo , Lipocalina-2/genética , Lipocalina-2/metabolismo , Hepatócitos/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Fígado/metabolismo , Antígenos CD36/metabolismo
3.
Molecules ; 24(23)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775277

RESUMO

In this paper, we present the possibility of using pea protein isolates as a stabilizer for hempseed oil (HSO)-based water/oil emulsions in conjunction with lecithin as a co-surfactant. A Box-Behnken design was employed to build polynomial models for optimization of the ultrasonication process to prepare the emulsions. The stability of the system was verified by droplet size measurements using dynamic light scattering (DLS) as well as centrifugation and thermal challenge tests. The z-ave droplet diameters of optimized emulsion were 209 and 207 nm after preparation and 1 week storage, respectively. The concentration of free Linoleic acid (C18:2; n-6) was used for calculation of entrapment efficiency in prepared nanoemulsions. At optimum conditions of the process, up to 98.63% ± 1.95 of entrapment was achieved. FTIR analysis and rheological tests were also performed to evaluate the quality of oil and emulsion, and to verify the close-to-water like behavior of the prepared samples compared to the viscous nature of the original oil. Obtained results confirmed the high impact of lecithin and pea protein concentrations on the emulsion droplet size and homogeneity confirmed by microscopic imaging. The presented results are the first steps towards using hempseed oil-based emulsions as a potential food additive carrier, such as flavor. Furthermore, the good stability of the prepared nanoemulsion gives opportunities for potential use in biomedical and cosmetic applications.


Assuntos
Emulsões/química , Aditivos Alimentares/química , Proteínas de Ervilha/química , Tensoativos/química , Difusão Dinâmica da Luz , Lecitinas/química , Nanoestruturas/química , Tamanho da Partícula , Reologia , Tensoativos/farmacologia , Viscosidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...