Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Horiz ; 9(2): 248-253, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38091005

RESUMO

The advent of monochromated electron energy-loss spectroscopy has enabled atomic-resolution vibrational spectroscopy, which triggered interest in spatially localized or quasi-localized vibrational modes in materials. Here we report the discovery of phonon vortices at heavy impurities in two-dimensional materials. We use density-functional-theory calculations for two configurations of Si impurities in graphene, Si-C3 and Si-C4, to examine atom-projected phonon densities of states and display the atomic-displacement patterns for select modes that are dominated by impurity displacements. The vortices are driven by large displacements of the impurities, and reflect local symmetries. Similar vortices are found at phosphorus impurities in hexagonal boron nitride, suggesting that they may be a feature of heavy impurities in crystalline materials. Phonon vortices at defects are expected to play a role in thermal conductivity and other properties.

2.
Phys Rev Lett ; 131(18): 186202, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37977630

RESUMO

Visualization of individual electronic states ascribed to specific unoccupied orbitals at the atomic scale can reveal fundamental information about chemical bonding, but it is challenging since bonding often results in only subtle variations in the whole density of states. Here, we utilize atomic-resolution energy-loss near-edge fine structure (ELNES) spectroscopy to map out the electronic states attributed to specific unoccupied p_{z} orbital around a fourfold coordinated silicon point defect in graphene, which is further supported by theoretical calculations. Our results illustrate the power of atomic-resolution ELNES towards the probing of defect-site-specific electronic orbitals in monolayer crystals, providing insights into understanding the effect of chemical bonding on the local properties of defects in solids.

3.
Front Biosci (Landmark Ed) ; 28(10): 242, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37919060

RESUMO

BACKGROUND: Metabolic reprogramming is an important player in the prognosis of cancer patients. However, metabolism-related genes (MRGs) that are essential to the prognosis of bladder cancer (BLCA) are nor yet fully understood. The purpose of this study is to use bioinformatics methods to establish prognostic models based on MRGs in BLCA to screen potential biomarkers. METHODS: Based on the transcriptomic data from BLCA patients in The Cancer Genome Atlas Program (TCGA) and Gene Expression Omnibus (GEO) databases, we identified the differentially expressed genes related to metabolism and analyzed the functional enrichment by edgeR package. A prognostic model was generated using univariate Cox regression analysis and validated using GEO dataset. The prognostic risk model was analyzed by the Kaplan-Meier curve. The single cell RNA sequencing (scRNA-seq) revealed the gene interaction networks and traced the development trajectories of distinct cell lineages. The levels of key metabolism-related biomarkers in vitro were verified by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: We screened 201 differentially expressed metabolism-related genes (DEMRGs), which were significantly enriched in oxidative phosphorylation. The risk model was constructed by 5 biomarkers. qRT-PCR analysis verified that there is a significant higher expression of FASN and MTHFD1L in carcinoma tissue. CONCLUSIONS: This study constructed a novel prognostic model based on a combination of clinical and molecular factors that related to metabolic reprogramming, which has the potential to improve the prediction of independent prognosis indicators and management of BLCA patients, leading to better treatment outcomes and survival rates.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Prognóstico , Neoplasias da Bexiga Urinária/genética , Fosforilação Oxidativa , Biomarcadores , Mutação
5.
Nature ; 615(7950): 56-61, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859579

RESUMO

Correlating atomic configurations-specifically, degree of disorder (DOD)-of an amorphous solid with properties is a long-standing riddle in materials science and condensed matter physics, owing to difficulties in determining precise atomic positions in 3D structures1-5. To this end, 2D systems provide insight to the puzzle by allowing straightforward imaging of all atoms6,7. Direct imaging of amorphous monolayer carbon (AMC) grown by laser-assisted depositions has resolved atomic configurations, supporting the modern crystallite view of vitreous solids over random network theory8. Nevertheless, a causal link between atomic-scale structures and macroscopic properties remains elusive. Here we report facile tuning of DOD and electrical conductivity in AMC films by varying growth temperatures. Specifically, the pyrolysis threshold temperature is the key to growing variable-range-hopping conductive AMC with medium-range order (MRO), whereas increasing the temperature by 25 °C results in AMC losing MRO and becoming electrically insulating, with an increase in sheet resistance of 109 times. Beyond visualizing highly distorted nanocrystallites embedded in a continuous random network, atomic-resolution electron microscopy shows the absence/presence of MRO and temperature-dependent densities of nanocrystallites, two order parameters proposed to fully describe DOD. Numerical calculations establish the conductivity diagram as a function of these two parameters, directly linking microstructures to electrical properties. Our work represents an important step towards understanding the structure-property relationship of amorphous materials at the fundamental level and paves the way to electronic devices using 2D amorphous materials.

6.
Nat Mater ; 22(5): 612-618, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36928385

RESUMO

Correlation of lattice vibrational properties with local atomic configurations in materials is essential for elucidating functionalities that involve phonon transport in solids. Recent developments in vibrational spectroscopy in a scanning transmission electron microscope have enabled direct measurements of local phonon modes at defects and interfaces by combining high spatial and energy resolution. However, pushing the ultimate limit of vibrational spectroscopy in a scanning transmission electron microscope to reveal the impact of chemical bonding on local phonon modes requires extreme sensitivity of the experiment at the chemical-bond level. Here we demonstrate that, with improved instrument stability and sensitivity, the specific vibrational signals of the same substitutional impurity and the neighbouring carbon atoms in monolayer graphene with different chemical-bonding configurations are clearly resolved, complementary with density functional theory calculations. The present work opens the door to the direct observation of local phonon modes with chemical-bonding sensitivity, and provides more insights into the defect-induced physics in graphene.

7.
Nature ; 613(7942): 53-59, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36600061

RESUMO

Interlayer electronic coupling in two-dimensional materials enables tunable and emergent properties by stacking engineering. However, it also results in significant evolution of electronic structures and attenuation of excitonic effects in two-dimensional semiconductors as exemplified by quickly degrading excitonic photoluminescence and optical nonlinearities in transition metal dichalcogenides when monolayers are stacked into van der Waals structures. Here we report a van der Waals crystal, niobium oxide dichloride (NbOCl2), featuring vanishing interlayer electronic coupling and monolayer-like excitonic behaviour in the bulk form, along with a scalable second-harmonic generation intensity of up to three orders higher than that in monolayer WS2. Notably, the strong second-order nonlinearity enables correlated parametric photon pair generation, through a spontaneous parametric down-conversion (SPDC) process, in flakes as thin as about 46 nm. To our knowledge, this is the first SPDC source unambiguously demonstrated in two-dimensional layered materials, and the thinnest SPDC source ever reported. Our work opens an avenue towards developing van der Waals material-based ultracompact on-chip SPDC sources as well as high-performance photon modulators in both classical and quantum optical technologies1-4.

8.
ACS Nano ; 17(3): 1916-1924, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36700561

RESUMO

Stacking order is expected to have a significant impact on the properties of van der Waals layered magnets, as it determines the crystallographic and magnetic symmetry. Recent synchrotron-based optical studies on antiferromagnetic MnPS3 have revealed a thickness-dependent symmetry crossover, suggesting possible different stackings in few-layer crystals from the bulk, which, however, has not been explicitly identified. Here, by using a combination of atomic-scale electron microscopy and theoretical calculations, we show that despite the bulk monoclinic stacking persists macroscopically down to bilayer, additional local rippling effect lifts the monoclinic symmetry of the few layers while preserving the trigonal symmetry of individual monolayers, leading to possible monolayer-like behavior in ultrathin MnPS3 samples. This finding reveals the profound impact of rippling on the microscopic symmetry of two-dimensional materials with weak interlayer interactions and raises the possibility of approaching the paradigmatic two-dimensional Néel antiferromagnetic honeycomb lattice in MnPS3 without reaching monolayer thickness.

9.
Nat Commun ; 13(1): 6863, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369234

RESUMO

Single-atom catalysts provide efficiently utilized active sites to improve catalytic activities while improving the stability and enhancing the activities to the level of their bulk metallic counterparts are grand challenges. Herein, we demonstrate a family of single-atom catalysts with different interaction types by confining metal single atoms into the van der Waals gap of two-dimensional SnS2. The relatively weak bonding between the noble metal single atoms and the host endows the single atoms with more intrinsic catalytic activity compared to the ones with strong chemical bonding, while the protection offered by the layered material leads to ultrahigh stability compared to the physically adsorbed single-atom catalysts on the surface. Specifically, the trace Pt-intercalated SnS2 catalyst has superior long-term durability and comparable performance to that of commercial 10 wt% Pt/C catalyst in hydrogen evolution reaction. This work opens an avenue to explore high-performance intercalated single-atom electrocatalysts within various two-dimensional materials.

10.
Natl Sci Rev ; 9(1): nwab026, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35111329

RESUMO

Synthesis of atomically dispersed catalysts with high metal loading and thermal stability is challenging but particularly valuable for industrial application in heterogeneous catalysis. Here, we report a facile synthesis of a thermally stable atomically dispersed Ir/α-MoC catalyst with metal loading as high as 4 wt%, an unusually high value for carbide supported metal catalysts. The strong interaction between Ir and the α-MoC substrate enables high dispersion of Ir on the α-MoC surface, and modulates the electronic structure of the supported Ir species. Using quinoline hydrogenation as a model reaction, we demonstrate that this atomically dispersed Ir/α-MoC catalyst exhibits remarkable reactivity, selectivity and stability, for which the presence of high-density isolated Ir atoms is the key to achieving high metal-normalized activity and mass-specific activity. We also show that the water-promoted quinoline hydrogenation mechanism is preferred over the Ir/α-MoC, and contributes to high selectivity towards 1,2,3,4-tetrahydroquinoline. The present work demonstrates a new strategy in constructing a high-loading atomically dispersed catalyst for the hydrogenation reaction.

11.
J Am Chem Soc ; 143(45): 18854-18858, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34730347

RESUMO

Controlling the chemical environments of the active metal atom including both coordination number (CN) and local composition (LC) is vital to achieve active and stable single-atom catalysts (SACs), but remains challenging. Here we synthesized a series of supported Pt1 SACs by depositing Pt atoms onto the pretuned anchoring sites on nitrogen-doped carbon using atomic layer deposition. In hydrogenation of para-chloronitrobenzene, the Pt1 SAC with a higher CN about four but less pyridinic nitrogen (Npyri) content exhibits a remarkably high activity along with superior recyclability compared to those with lower CNs and more Npyri. Theoretical calculations reveal that the four-coordinated Pt1 atoms with about 1 eV lower formation energy are more resistant to agglomerations than the three-coordinated ones. Composition-wise decrease of the Pt-Npyri bond upshifts gradually the Pt-5d center, and minimal one Pt-Npyri bond features a high-lying Pt-5d state that largely facilitates H2 dissociation, boosting hydrogenation activity remarkably.

12.
J Am Chem Soc ; 143(36): 14530-14539, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34464109

RESUMO

Atomically dispersed M-N-C (M refers to transition metals) materials represent the most promising catalyst alternatives to the precious metal Pt for the electrochemical reduction of oxygen (ORR), yet the genuine active sites in M-N-C remain elusive. Here, we develop a two-step approach to fabricate Cu-N-C single-atom catalysts with a uniform and well-defined Cu2+-N4 structure that exhibits comparable activity and superior durability in comparison to Pt/C. By combining operando X-ray absorption spectroscopy with theoretical calculations, we unambiguously identify the dynamic evolution of Cu-N4 to Cu-N3 and further to HO-Cu-N2 under ORR working conditions, which concurrently occurs with reduction of Cu2+ to Cu+ and is driven by the applied potential. The increase in the Cu+/Cu2+ ratio with the reduced potential indicates that the low-coordinated Cu+-N3 is the real active site, which is further supported by DFT calculations showing the lower free energy in each elemental step of the ORR on Cu+-N3 than on Cu2+-N4. These findings provide a new understanding of the dynamic electrochemistry on M-N-C catalysts and may guide the design of more efficient low-cost catalysts.

13.
Nat Commun ; 12(1): 809, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547287

RESUMO

The discovery of ferromagnetic two-dimensional van der Waals materials has opened up opportunities to explore intriguing physics and to develop innovative spintronic devices. However, controllable synthesis of these 2D ferromagnets and enhancing their stability under ambient conditions remain challenging. Here, we report chemical vapor deposition growth of air-stable 2D metallic 1T-CrTe2 ultrathin crystals with controlled thickness. Their long-range ferromagnetic ordering is confirmed by a robust anomalous Hall effect, which has seldom been observed in other layered 2D materials grown by chemical vapor deposition. With reducing the thickness of 1T-CrTe2 from tens of nanometers to several nanometers, the easy axis changes from in-plane to out-of-plane. Monotonic increase of Curie temperature with the thickness decreasing from ~130.0 to ~7.6 nm is observed. Theoretical calculations indicate that the weakening of the Coulomb screening in the two-dimensional limit plays a crucial role in the change of magnetic properties.

14.
Nature ; 589(7842): 396-401, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33473229

RESUMO

The water-gas shift (WGS) reaction is an industrially important source of pure hydrogen (H2) at the expense of carbon monoxide and water1,2. This reaction is of interest for fuel-cell applications, but requires WGS catalysts that are durable and highly active at low temperatures3. Here we demonstrate that the structure (Pt1-Ptn)/α-MoC, where isolated platinum atoms (Pt1) and subnanometre platinum clusters (Ptn) are stabilized on α-molybdenum carbide (α-MoC), catalyses the WGS reaction even at 313 kelvin, with a hydrogen-production pathway involving direct carbon monoxide dissociation identified. We find that it is critical to crowd the α-MoC surface with Pt1 and Ptn species, which prevents oxidation of the support that would cause catalyst deactivation, as seen with gold/α-MoC (ref. 4), and gives our system high stability and a high metal-normalized turnover number of 4,300,000 moles of hydrogen per mole of platinum. We anticipate that the strategy demonstrated here will be pivotal for the design of highly active and stable catalysts for effective activation of important molecules such as water and carbon monoxide for energy production.

15.
J Am Chem Soc ; 143(2): 628-633, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33382262

RESUMO

We report the syntheses of highly dispersed CoNi bimetallic catalysts on the surface of α-MoC based on the strong metal support interaction (SMSI) effect. The interaction between the nearly atomically dispersed Co and Ni atoms was observed for the first time by the real-space chemical mapping at the atomic level. Combined with the ability of α-MoC to split water at low temperatures, the as-synthesized CoNi/α-MoC catalysts exhibited robust and synergistic performance for the hydrogen production from hydrolysis of ammonia borane. The metal-normalized activity of the bimetallic 1.5Co1.5Ni/α-MoC catalyst reached 321.1 molH2·mol-1CoNi·min-1 at 298 K, which surpasses all the noble metal-free catalysts ever reported and is four times higher than that of the commercial Pt/C catalyst.

16.
J Am Chem Soc ; 142(16): 7276-7282, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32250611

RESUMO

Electrocatalytic CO2 reduction (CO2RR) to valuable fuels is a promising approach to mitigate energy and environmental problems, but controlling the reaction pathways and products remains challenging. Here a novel Cu2O nanoparticle film was synthesized by square-wave (SW) electrochemical redox cycling of high-purity Cu foils. The cathode afforded up to 98% Faradaic efficiency for electroreduction of CO2 to nearly pure formate under ≥45 atm CO2 in bicarbonate catholytes. When this cathode was paired with a newly developed NiFe hydroxide carbonate anode in KOH/borate anolyte, the resulting two-electrode high-pressure electrolysis cell achieved high energy conversion efficiencies of up to 55.8% stably for long-term formate production. While the high-pressure conditions drastically increased the solubility of CO2 to enhance CO2 reduction and suppress hydrogen evolution, the (111)-oriented Cu2O film was found to be important to afford nearly 100% CO2 reduction to formate. The results have implications for CO2 reduction to a single liquid product with high energy conversion efficiency.

17.
Nat Commun ; 11(1): 772, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034131

RESUMO

Lateral heterostructures of two-dimensional transition metal dichalcogenides (TMDs) have offered great opportunities in the engineering of monolayer electronics, catalysis and optoelectronics. To explore the full potential of these materials, developing methods to precisely control the spatial scale of the heterostructure region is crucial. Here, we report the synthesis of ultra-long MoS2 nano-channels with several micrometer length and 2-30 nanometer width within the MoSe2 monolayers, based on intrinsic grain boundaries (GBs). First-principles calculations disclose that the strain fields near the GBs not only lead to the preferred substitution of selenium by sulfur but also drive coherent extension of the MoS2 channel from the GBs. Such a strain-driven synthesis mechanism is further shown applicable to other topological defects. We also demonstrate that the spontaneous strain of MoS2 nano-channels can further improve the hydrogen production activity of GBs, paving the way for designing GB based high-efficient TMDs in the catalytic application.

18.
Natl Sci Rev ; 7(8): 1360-1366, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34692164

RESUMO

The two-electron reduction of molecular oxygen represents an effective strategy to enable the green, mild and on-demand synthesis of hydrogen peroxide. Its practical viability, however, hinges on the development of advanced electrocatalysts, preferably composed of non-precious elements, to selectively expedite this reaction, particularly in acidic medium. Our study here introduces 2H-MoTe2 for the first time as the efficient non-precious-metal-based electrocatalyst for the electrochemical production of hydrogen peroxide in acids. We show that exfoliated 2H-MoTe2 nanoflakes have high activity (onset overpotential ∼140 mV and large mass activity of 27 A g-1 at 0.4 V versus reversible hydrogen electrode), great selectivity (H2O2 percentage up to 93%) and decent stability in 0.5 M H2SO4. Theoretical simulations evidence that the high activity and selectivity of 2H-MoTe2 arise from the proper binding energies of HOO* and O* at its zigzag edges that jointly favor the two-electron reduction instead of the four-electron reduction of molecular oxygen.

19.
ChemSusChem ; 13(5): 929-937, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-31880398

RESUMO

Metal-N-C is a type of attractive electrocatalyst for efficient CO2 reduction to CO. Because of the ambiguity in their atomic structures, the active sites and catalytic mechanisms of the catalysts have remained under debate. Here, the effects of N and C hybrid coordination on the activity of Ni-N-C catalysts were investigated, combining theoretical and experimental methods. The theoretical calculations revealed that N and C hybrid coordination greatly enhanced the capability of single-atom Ni active sites to provide electrons to reactant molecules and strengthens the bonding of Ni to N and C in the Ni-N-C complexes. During the reaction process, the C and N coordination synergistically optimized the reaction energies in the conversion of CO2 to CO. A good agreement between theoretical calculations and electrochemical experiments was achieved based on the newly developed Ni-N-C electrocatalysts. The activity of hybrid-coordination NiN2 C2 was more than double that of single-coordination NiN4 .

20.
Nat Commun ; 10(1): 2807, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31243275

RESUMO

Formic acid (or formate) is suggested to be one of the most economically viable products from electrochemical carbon dioxide reduction. However, its commercial viability hinges on the development of highly active and selective electrocatalysts. Here we report that structural defects have a profound positive impact on the electrocatalytic performance of bismuth. Bismuth oxide double-walled nanotubes with fragmented surface are prepared as a template, and are cathodically converted to defective bismuth nanotubes. This converted electrocatalyst enables carbon dioxide reduction to formate with excellent activity, selectivity and stability. Most significantly, its current density reaches ~288 mA cm-2 at -0.61 V versus reversible hydrogen electrode within a flow cell reactor under ambient conditions. Using density functional theory calculations, the excellent activity and selectivity are rationalized as the outcome of abundant defective bismuth sites that stabilize the *OCHO intermediate. Furthermore, this electrocatalyst is coupled with silicon photocathodes and achieves high-performance photoelectrochemical carbon dioxide reduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...