Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 45(6): 3725-3733, 2024 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-38897792

RESUMO

Organic fertilizer substitution has been promoted as a weight loss, efficient, and diversified fertilizer substitution technology in agricultural production. However, there is a lack of comprehensive assessment of the impact of organic fertilizers on N2O and NO emissions from orchards. In this study, N2O and NO emissions from peach orchards were observed annually using static dark box-gas chromatography to compare the effects of chemical fertilizer application alone and partial replacement of chemical fertilizer treatment on NO emissions from peach orchards. The results showed that the partial replacement of chemical fertilizers with organic fertilizers reduced the total N2O and NO emissions from peach orchards by 15.0 % and 9.4 %, respectively. The N2O and NO emission factors were reduced by 21.3 % and 21.1 %. The mineral N content of the soil in the organic fertilizer treatment was lower than that in the chemical fertilizer treatment alone. The organic fertilizer treatment increased the contribution of AOA to nitrification and decreased the contribution of AOB, thus reducing N2O and NO from nitrification. In addition, the results of the dual isotope mixing model[δ18O(N2O/H2O) vs. δ15NSP] indicated that the bacterial denitrification/nitrifying bacterial denitrification (bD/nD) process served as the primary pathway for N2O emissions in peach orchards. Partial substitution with organic fertilizers enhanced soil denitrification, resulting in larger reductions in the amounts of N2O and NO. Therefore, partial substitution of organic fertilizer is a viable measure to mitigate nitrogen oxide emissions from orchards and to achieve green and low-carbon development in agriculture.

2.
Sci Total Environ ; 921: 171192, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401727

RESUMO

Emerging evidence suggests that replacing mineral fertilizers with organic livestock manure can effectively suppress reactive gaseous nitrogen (N) emissions from soils. However, the extent of this mitigation potential and the underlying microbial mechanisms in orchards remain unclear. To address this knowledge gap, we measured nitrous and nitric oxide (N2O and NO) emissions, microbial N cycling gene abundance, and N2O isotopomer ratios in pear and citrus orchards under three different fertilization regimes: no fertilization, mineral fertilizer, and manure plus mineral fertilizer. The results showed that although manure application caused large transient peaks of N2O, it reduced cumulative emissions of N2O and NO by an average of 20 % and 17 %, respectively, compared to the mineral fertilizer treatment. Partial replacement of mineral fertilizers with manure enhanced the contribution of AOA to nitrification and reduced the contribution of AOB, thus reducing N2O emissions from nitrification. Isotope analysis suggested that the pathway for N2O production in the soils of both orchards was dominated by bacterial denitrification and nitrifier denitrification. The manure treatment reduced the ratio of denitrification products. Additionally, the dual isotope mixing model results indicated that partially replacing mineral fertilizers with manure could promote soil denitrification, resulting in more N2O being reduced. N-oxide emissions were on average 67 % higher in the pear orchard than in the citrus orchard, probably due to the differences in soil physicochemical properties and growth habits between the two orchards. These findings underscore the potential of partially replacing mineral fertilizers with organic manure in orchards to reduce gaseous N emissions, contributing to the transition towards environmentally sustainable and climate-smart agricultural practices.

3.
Chemosphere ; 336: 139272, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37343633

RESUMO

Conventional and bio-organic fertilizers play an important role in maintaining soil health and promoting crop growth. However, the effect of organic fertilizers on the prevalence of antibiotic resistance genes (ARGs) in the vegetable cropping system has been largely overlooked. In this study, we investigated the impacts of soil properties and biotic factors on ARG profiles by analyzing ARG and bacterial communities in vegetable copping soils with a long-term history of manure and bio-organic fertilizer application. The ARG abundance in the soil was significantly increased by 116% with manure application compared to synthetic NPK fertilizer application. This finding was corroborated by our meta-analysis that the longer the duration of manure application, the greater the response of increased soil ARG abundance. However, bio-organic fertilizers containing Trichoderma spp. Significantly reduced ARG contamination by 31% compared to manure application. About half of the ARG variation was explained by changes in bacterial abundance and structure, followed by soil properties. The mitigation of ARG by Trichoderma spp. Is achieved by altering the structure of the bacterial community and weakening the close association between bacteria and ARG prevalence. Taken together, these findings shed light on the contribution of bio-organic fertilizers in mitigating ARG contamination in agricultural soils, which can help manage the ecological risk posed by ARG inputs associated with manure application.


Assuntos
Antibacterianos , Solo , Solo/química , Antibacterianos/farmacologia , Fertilizantes/análise , Genes Bacterianos , Esterco/microbiologia , Microbiologia do Solo , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Verduras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...