Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Int Wound J ; 21(3): e14438, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935456

RESUMO

This meta-analysis assessed the effect of pneumatic compression therapy on the wound healing of venous ulcers, with the aim of providing a basis for the selection of clinical treatment. Randomised controlled trials (RCTs) on the application of pneumatic compression therapy to venous ulcers were collected by searching PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, VIP, and Wanfang databases, with a timeframe from database inception to August 2023. After two researchers independently screened the literature, extracted information, and evaluated the quality of the included studies, a meta-analysis was performed using RevMan 5.4 software. Six RCTs with 367 patients were included, with 172 patients in the intervention group and 195 in the control group. The results showed that pneumatic and bandage compression therapies had a similar impact on wound healing rates of venous ulcers (54.65% vs. 53.84%, odds ratio [OR]: 1.02, 95% confidence interval [CI]: 0.49-2.12, p = 0.96), changes in wound area (standardised mean difference: -0.16, 95% CIs: -0.45 to 0.12, p = 0.26), adverse event rates (76.56% vs. 67.07%, OR: 1.62, 95% CI: 0.77-3.39, p = 0.20), and the differences were not statistically significant. Thus, current evidence suggests that the effects of pneumatic compression therapy on wound healing rates, changes in wound area, and the incidence of adverse events in patients with venous ulcers are similar to those of bandage pressure therapy. However, owing to the limitations in the number and quality of studies, more high-quality RCTs are needed to clarify the feasibility and economics of pneumatic compression therapy in patients with venous ulcers.

2.
Environ Sci Technol ; 57(39): 14611-14621, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37733635

RESUMO

Antibiotic resistance genes (ARGs) and microplastics (MPs) are recognized as emerging contaminants and threats to global human health. Despite both of them being significantly detected in their "hotspots", i.e., waste activated sludge (WAS), rare studies on how MPs affect ARGs and antibiotic-resistant bacteria (ARB) in anaerobic sludge digestion are available. Herein, the fate of ARGs and ARB after exposure to MPs of three dosages (10, 30, and 80 particles/g-TS), three polymer types (LDPE, PET, and PS), and three branching extents (LDPE, LLDPE, and HDPE) in anaerobic sludge digestion was investigated. Metagenomic results indicated that all variants of MPs resulted in an increase of the relative abundance of ARGs in the digester compared to the control. The abundance of ARGs demonstrated a dosage-dependent relationship within the range from 10 to 80 particles/g-TS, resulting in an increase from 4.5 to 27.9% compared to the control. Branching structure and polymer type influence ARG level in the sludge digester as well. Mechanism studies revealed that LDPE selectively enriched potential ARB and ARGs in the surface biofilm, possibly creating a favorable environment for ARB proliferation and ARG exchange. Furthermore, vertical transfer of ARGs was facilitated by LDPE through increasing bacterial cell proliferation accompanied by the enhancement of relevant functional genes. The elevated abundance of mobile genetic elements (MGEs) and ARGs-carrying plasmids also demonstrated that MGE-mediated horizontal transfer was promoted by LDPE at 80 particles/g-TS. This effect was compounded by increased oxidative stress, cell membrane permeability, and cell cohesion, collectively facilitating horizontal ARG transfer. Consequently, both vertical and horizontal transfer of ARGs could be concurrently promoted by LDPE an in anaerobic sludge digester.


Assuntos
Microplásticos , Esgotos , Humanos , Esgotos/microbiologia , Plásticos , Genes Bacterianos , Anaerobiose , Transferência Genética Horizontal , Prevalência , Antagonistas de Receptores de Angiotensina , Polietileno , Antibacterianos/farmacologia , Inibidores da Enzima Conversora de Angiotensina , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Digestão
3.
Sci Total Environ ; 884: 163829, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121315

RESUMO

Bio-wastes treatment and disposal has become a challenge because of their increasing output. Given the abundant organic matter in bio-wastes, its related resource treatment methods have received more and more attention. As a promising strategy, anaerobic digestion (AD) has been widely used in the treatment of bio-wastes, during which not only methane as energy can be recovered but also their reduction can be achieved. However, AD process is generally disturbed by some internal factors (e.g., low hydrolysis efficiency and accumulated ammonia) and external factors (e.g., input pollutants), resulting in unstable AD operation performance. Recently, hydrochar was wildly found to improve AD performance when added to AD systems. This review comprehensively summarizes the research progress on the performance of hydrochar-mediated AD, such as increased methane yield, improved operation efficiency and digestate dewatering, and reduced heavy metals in digestate. Subsequently, the underlying mechanisms of hydrochar promoting AD were systematically elucidated and discussed, including regulation of electron transfer (ET) mode, microbial community structure, bio-processes involved in AD, and reaction conditions. Moreover, the effects of properties of hydrochar (e.g., feedstock, hydrothermal carbonization (HTC) temperature, HTC time, modification and dosage) on the improvement of AD performance are systematically concluded. Finally, the relevant knowledge gaps and opportunities to be studied are presented to improve the progress and application of the hydrochar-mediated AD technology. This review aims to offer some references and directions for the hydrochar-mediated AD technology in improving bio-wastes resource recovery.


Assuntos
Metano , Anaerobiose , Temperatura
4.
J Environ Manage ; 336: 117659, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36893544

RESUMO

The growing increasing occurrence of perfluorooctanoic acid (PFOA) in wastewater has raised concerns about its potential impact on the environment. Nevertheless, the impact of PFOA at environmentally relevant level on the formation of aerobic granular sludge (AGS) is still a 'black box'. This study thus aims to fill this gap by comprehensive investigation of sludge properties, reactor performance and microbial community during the formation of AGS. It was found that 0.1 mg/L PFOA delayed the formation of AGS, causing relatively lower proportion of large size AGS at the end of operation process. Interestingly, the microorganisms contribute to the reactor's tolerance to PFOA by secreting more extracellular polymeric substances (EPS) to slow or block the entry of toxic substances into the cells. During the granule maturation period, the reactor nutrient removal especially chemical oxygen demand (COD) and total nitrogen (TN) were affected by PFOA, decreasing the corresponding removal efficiencies to ∼81.2% and ∼69.8%, respectively. Microbial analysis further revealed that PFOA decreased the abundances of Plasticicumulans, Thauera, Flavobacterium and Cytophagaceae_uncultured, but it has promoted Zoogloea and Betaproteobacteria_unclassified growth, which maintained the structures and functions of AGS. The above results revealed that the intrinsic mechanism of PFOA on the macroscopic representation of sludge granulation process was revealed, and it is expected to provide theoretical insights and practical support for direct adoption of municipal or industrial wastewater containing perfluorinated compounds to cultivate AGS.


Assuntos
Esgotos , Águas Residuárias , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Aerobiose , Reatores Biológicos/microbiologia , Nitrogênio
5.
Water Res ; 228(Pt A): 119356, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423550

RESUMO

Both microplastics (MPs) and antibiotic resistance genes (ARGs) are intensively detected in waste activated sludge (WAS). However, the distinctive impacts of different MPs on ARGs emergence, dissemination, and its potential mechanisms remain unclear. In this study, long-term semi-continuous digesters were performed to examine the profiles of ARGs and antibiotic-resistant bacteria (ARB) in response to two different typical MPs (polyethylene (PE) and polyvinyl chloride (PVC)) in anaerobic sludge digestion. Metagenomic results show that PE- and PVC-MPs increase ARGs abundance by 14.8% and 23.6% in digester, respectively. ARB are also enriched by PE- and PVC-MPs, Acinetobacter sp. and Salmonella sp. are the dominant ARB. Further exploration reveals that PVC-MPs stimulates the acquisition of ARGs by human pathogen bacteria (HPB) and functional microorganisms (FMs), but PE-MPs doesn't. Network analysis shows that more ARGs tend to co-occur with HBP and FMs after MPs exposure, and more importantly, new bacteria are observed to acquire ARGs possibly via horizontal gene flow (HGF) in MPs-stressed digester. The genes involved in the HGF process, including reactive oxygen species (ROS) production, cell membrane permeability, extracellular polymeric substances (EPS) secretion, and ATP synthesis, are also enhanced by MPs, thereby attributing to the promoted ARGs dissemination. These findings offer advanced insights into the distinctive contribution of MPs to fate, host, dissemination of ARGs in anaerobic sludge digestion.


Assuntos
Microplásticos , Esgotos , Humanos , Fluxo Gênico , Plásticos , Cloreto de Polivinila , Anaerobiose , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Resistência Microbiana a Medicamentos/genética , Polietileno , Digestão
6.
Drug Dev Res ; 83(8): 1766-1776, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36074793

RESUMO

Among gynecological tumors, cervical cancer (CC) has the second-highest prevalence and mortality rate. α-Pinene is a bicyclic monoterpenoid compound extracted from pine needles that carried promising anticancer properties. Nevertheless, its effect on CC and the underlying mechanism has not yet been elucidated. Therefore, we investigated the effect of α-Pinene on apoptosis in CC via in vitro assays of flow cytometry (FCW), terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot. Following that, we detected the proapoptotic function of α-Pinene on HeLa cells in vivo by TUNEL assay and immunofluorescence staining. Our results displayed that the α-Pinene inhibited the growth of HeLa cells and stalled the cells in the G0/G1 phase. Interestingly, we also detected that α-Pinene induced HeLa cells to apoptosis. The results investigated that α-Pinene induced HeLa cells apoptosis along with up-regulating the expression of Bax, Bid, caspase-9, caspase-3, miR-34a-5p, and down-regulating the expression of Bcl-2 in vitro. At the same time, the expression levels of target genes in vivo were consistent with those in vitro. Our experiment proved that α-Pinene promoted apoptosis, which will be used to hopefully maximize the therapeutic strategies in clinical studies in CC.


Assuntos
MicroRNAs , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Células HeLa , MicroRNAs/genética , MicroRNAs/metabolismo , Monoterpenos Bicíclicos/farmacologia , Apoptose , Proliferação de Células
7.
Bioresour Technol ; 362: 127765, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35985463

RESUMO

This work reported a new waste functionalization and utilization method, which use digestate to prepare hydrochar to improve methane production from food waste (FW) and sewage sludge (SS). Experimental results presented that 10 g/L hydrochar obtained the cumulative methane production of 133.11 ± 1.18 mL/g volatile solids added, 26.99 % higher than that without hydrochar addition. By monitoring the conversion of model metabolic intermediates, 10 g/L hydrochar was determined to favor hydrolysis, acidogenesis and methonogenesis bio-processes involved in methane production, thus improving the degradation of solubilized organics and consumption of short-chain fatty acids (SCFAs) during the co-digestion. Microbial investigation revealed that 10 g/L hydrochar enriched the microbes relevant to methane production (e.g., Methanosaeta and Syntrophomonas), but reduced the abundances of hydrolysis- and acidogenesis-related microbes (e.g., Acinetobacter). This hydrochar-based preparation and utilization strategy might offer a novel paradigm for waste-control-waste, bringing economic and environmental benefits.


Assuntos
Eliminação de Resíduos , Esgotos , Anaerobiose , Reatores Biológicos , Digestão , Alimentos , Metano
8.
Environ Sci Technol ; 56(6): 3658-3668, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35254057

RESUMO

This study demonstrated that Fe3O4 simultaneously improves the total production and formation rate of medium-chain fatty acids (MCFAs) and long-chain alcohols (LCAs) from waste activated sludge (WAS) in anaerobic fermentation. Results revealed that when Fe3O4 increased from 0 to 5 g/L, the maximal MCFA and LCA production increased significantly, and the optimal fermentation time was also remarkably shortened from 24 to 9 days. Moreover, Fe3O4 also enhanced WAS degradation, and the corresponding degradation rate in the fermentation system increased from 43.86 to 72.38% with an increase in Fe3O4 from 0 to 5 g/L. Further analysis showed that Fe3O4 promoted the microbe activities of all the bioprocesses (including hydrolysis, acidogenesis, and chain elongation processes) involved in the MCFA and LCA production from WAS. Microbial community analysis indicated that Fe3O4 increased the abundances of key microbes involved in abovementioned bioprocesses correspondingly. Mechanistic investigations showed that Fe3O4 increased the conductivity of the fermented sludge, providing a better conductive environment for the anaerobic microbes. The redox cycle of Fe(II) and Fe(III) existed in the fermentation system with Fe3O4, which was likely to act as electron shuttles to conduct electron transfer (ET) from the electron donor to the acceptor, thus increasing ET efficiency. This study provides an effective method for enhancing the biotransformation of WAS into high-value products, potentially bringing economic benefits to WAS treatment.


Assuntos
Ácidos Graxos Voláteis , Esgotos , Anaerobiose , Biotransformação , Fermentação , Compostos Férricos , Concentração de Íons de Hidrogênio
9.
Sci Total Environ ; 806(Pt 1): 150347, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34563898

RESUMO

Rhamnolipid (RL), as an environmentally compatible biosurfactant, has been used to enhance waste activated sludge (WAS) fermentation. However, the effect of RL on hydrogen accumulation in anaerobic fermentation remains unclear. Therefore, this work targets to investigate the mechanism of RL-based dark fermentation system on hydrogen production of WAS. It was found that the maximum yield of hydrogen increased from 1.76 ± 0.26 to 11.01 ± 0.30 mL/g VSS (volatile suspended solids), when RL concentration increased from 0 to 0.10 g/g TSS (total suspended solids). Further enhancement of RL level to 0.12 g/g TSS slightly reduced the production to 10.80 ± 0.28 mL/g VSS. Experimental findings revealed that although RL could be degraded to generate hydrogen, it did not play a major role in enhancing hydrogen accumulation. Mechanism analysis suggested that RL decreased the surface tension between sludge liquid and hydrophobic compounds, thus accelerating the solubilization of WAS, improving the proportion of biodegradable substances which could be used for subsequent hydrogen production. Regardless of the fact that adding RL suppressed all the fermentation processes, the inhibition effect of processes associated with hydrogen consumption was much severer than that of hydrogen production. Further investigations of microbial community revealed that RL enriched the relative abundance of hydrogen producers e.g., Romboutsia but reduced that of hydrogen consumers like Desulfobulbus and Caldisericum.


Assuntos
Hidrogênio , Esgotos , Ácidos Graxos Voláteis , Fermentação , Glicolipídeos , Concentração de Íons de Hidrogênio
10.
Sci Total Environ ; 799: 149383, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34371398

RESUMO

Sodium dodecylbenzene sulfonate (SDBS), a typical surfactant being widely used in various applications, was highly accumulated in waste activated sludge. To date, however, its effect on hydrogen production from dark fermentation of sludge has not been documented. The work therefore aimed to explore whether and how SDBS affects hydrogen production. Experimental results showed that with an increase of SDBS from 0 to 30 mg/g TSS, the maximal hydrogen yield increased from 2.47 to 10.73 mL/g VSS (without any treatment) and from 13.05 to 23.51 mL/g VSS (under free ammonia pretreatment). Mechanism exploration showed that SDBS lowered surface tension, facilitated organics transfer from solid to liquid. SDBS also destroyed hydrogen bonding networks of protein, promoted macromolecular organics degradation. Besides, SDBS improved the electric charge in organics, then weakened the mutual repulsion, improved adsorb, interact and promoted the availability of reaction sites between anaerobes and organic substances. Enzyme activity analysis showed that SDBS not only improved the activities of enzymes related to hydrolysis and acidification processes, but also inhibited the activities of homoacetogens and methanogens. SDBS presence lowered sludge ORP and created an environment which was helpful to the growth of butyric-type bacteria, thus enhanced butyric-type fermentation, which contributed hydrogen production largely. Microbial community analysis revealed that SDBS existence affected distributions of microbial populations, and increased the abundances of hydrogen producing microorganisms (e.g., unclassified_f_Synergistaceae). PICRUSt2 analysis showed that SDBS reduced hydrogenotrophic methanogens activity for its inhibitory effect on the biotransformation of 5,10-Methenyl-THMPT to 5-methyl-THMPT.


Assuntos
Hidrogênio , Esgotos , Derivados de Benzeno , Ácidos Graxos Voláteis , Fermentação , Concentração de Íons de Hidrogênio , Sódio
11.
J Hazard Mater ; 419: 126389, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34323710

RESUMO

Anaerobically digested sludge (ADS) is commonly hard to dewater for the presence of extracellular polymeric substances (EPS) and the liberation of glutinous soluble microbic products during anaerobic digestion. Sodium percarbonate (SPC) expediting zero-valent iron (ZVI) corrosion (SPC/ZVI) process firstly conditioned ADS to amend its dewaterability. Results showed that SPC/ZVI conditioning decreased moisture content of dewatered cake from 90.5% (control) to 69.9% with addition of 0.10 g/g TS SPC and 0.20 g/g TS ZVI. Mechanistic research indicated that the enhanced ADS dewaterability mainly resulted from •OH and Fe(III)/iron polymers yielded in SPC/ZVI. •OH disrupted EPS, damaged cytoderm & cytomembrane, and lysed intracellular substances, unbinding the bound water. Meanwhile, the breakage and inactivation of microbe by •OH prompted the production of macro-pores in ADS. •OH adjusted the conformation of extracellular/intracellular proteins by intervening in the H-bonds and S-S bonds, availing the hydrophobicity and slight flocculation of ADS. •OH further facilitated the despiralization of α-helical to ß-sheet structure in ADS pellets, benefiting cell-to-cell aggregation. Additionally, Fe(III)/iron polymers from ZVI corrosion accelerated to gather ADS and maintained its floc structure. Consequently, SPC/ZVI conditioning not only adjusted the natures of ADS and its EPS but also the features of residual pellets, which further induced the advancement of ADS dewaterability. In addition, SPC/ZVI conditioning possibly surmounts some limitations existing in ZVI/Peroxide or ZVI/Persulfate technique.


Assuntos
Ferro , Esgotos , Carbonatos , Corrosão , Oxirredução , Eliminação de Resíduos Líquidos
12.
Environ Res ; 195: 110792, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545126

RESUMO

Clarithromycin retained in waste activated sludge (WAS) inevitably enters the anaerobic digestion system. So far, the complex impacts and fate of clarithromycin in continuous operated WAS anaerobic digestion system are still unclear. In this study, two semi-continuous long-term reactors were set up to investigate the effect of clarithromycin on biogas production and antibiotic resistance genes (ARGs) during WAS anaerobic digestion, and a batch test was carried out to explore the potential metabolic mechanism. Experimental results showed that clarithromycin at lower concentrations (i.e., 0.1 and 1.0 mg/L) did not affect biogas production, whereas the decrease in biogas production was observed when the concentration of clarithromycin was further increased to 10 mg/L. Correspondingly, the relative abundance of functional bacteria in WAS anaerobic digestion (i.e., Anaerolineaceae and Microtrichales) was reduced with long-term clarithromycin exposure. The investigation of ARGs suggested that the effect of methylation belonging to the target site modification played a critical role for the anaerobic microorganisms in the expression of antibiotic resistance, and ermF, played dominated ARGs, presented the most remarkable proliferation. In comparison, the role of efflux pump was weakened with a significant decrease of two detected efflux genes. During WAS anaerobic digestion, clarithromycin could be partially degraded into metabolites with lower antimicrobial activity including oleandomycin and 5-O-desosaminyl-6-O-methylerythronolide and other metabolites without antimicrobial activity.


Assuntos
Biocombustíveis , Esgotos , Anaerobiose , Reatores Biológicos , Claritromicina , Resistência Microbiana a Medicamentos/genética
13.
Water Res ; 194: 116909, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33609905

RESUMO

In this work, a rhamnolipid (RL) pretreatment technology was proposed to promote methane production from two-phase anaerobic digestion of waste activated sludge. In the first phase (i.e., acidogenic phase), the WAS hydrolysis and acidogenesis were significantly enhanced after RL pretreatment for 4 day, under which the concentration of soluble protein and the short-chain fatty acids (SCFA) in the presence of RL at 0.04 g/g TSS was respectively 2.50 and 5.02 times higher than that without RL pretreatment. However, methane production was inhibited in the presence of RL. In the second phase (i.e., methanogenic phase), batch biochemical methane potential tests suggested that the addition of RL is effective in promoting anaerobic methane production. With an increase of RL dosage from 0 to 0.04 g/g TSS, the cumulative methane yield increased from 100.42 ± 3.01 to 168.90 ± 5.42 mL. Although the added RL could be utilized to produce methane, it was not the major contributor to the enhancement of methane yield. Further analysis revealed that total cumulative yield from the entire two-phase anaerobic digestion (sum of the yield of the acidogenic phase and methanogenic phase) increased from 113.42 ± 3.56 to 164.18 ± 5.20 mL when RL dosage increased from 0 to 0.03 g/g TSS, indicating that the addition of RL induced positive effect on the methane production of the entire two-phase anaerobic digestion. The enzyme activity analysis showed that although higher dosages of RL still inhibited the microorganisms related to methanogenesis to some extends in the methanogenic phase, the inhibitory effect was significantly weakened compared to the acidogenic phase. Microbial analysis revealed that RL reduced the abundance of Candidatus_Methanofastidiosum sp. while increased the abundance of Methanosaeta sp., causing the major methanogenesis pathway to change from hydrogenotrophic to aceticlastic. Moreover, the community of hydrolytic microbes and acidogens was shifted in the direction that is conducive to hydrolysis-acidogenesis. The findings reported not only expand the application field of RL, but also may provide supports for sustainable operation of wastewater treatment plants (WWTPs).


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Glicolipídeos , Metano
14.
Sci Total Environ ; 768: 144470, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33454470

RESUMO

The stable operation of the anaerobic digestion of waste activated sludge (WAS) is threatened by numerous emerging contaminants. Meanwhile, the extensive microplastic pollution increased the environmental exposure risk of plasticizer benzyl butyl phthalate (BBP), the BBP content has reached a substantial level in WAS. However, the effect of BBP on WAS anaerobic digestion is still unknown. Here we show that high-level BBP brings on anaerobic digestion upset. The presence of 10.0 mg/L BBP (in sludge with 17,640 ± 510 mg/L TSS) led to deferred cell lysis, which was confirmed by the results of continuous parallel factor analysis of dissolved organic matter and the liberation of lactate dehydrogenase. Further, the deferred cell rupture was confirmed associate with prophage activation during WAS anaerobic digestion. Besides solubilization, the hydrolysis, acetogenesis and methanogenesis were also affected by the addition of BBP. The long-term effects of BBP revealed that the dominant microbial structure in anaerobic digester was stable, but the abundance of many functional microorganisms was changed, including short chain fatty acid producers and consumers. This work highlights one of the susceptibility mechanisms for WAS anaerobic digestion processes and provides new perspectives for the comprehensive assessment of emerging contaminant's environmental risks.


Assuntos
Prófagos , Esgotos , Anaerobiose , Reatores Biológicos , Metano , Ácidos Ftálicos , Plásticos , Eliminação de Resíduos Líquidos
15.
Environ Sci Technol ; 55(3): 1992-2005, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33430585

RESUMO

Chemical absorption-biological reduction based on Fe(II)EDTA is a promising technology to remove nitric oxide (NO) from flue gases. However, limited effort has been made to enable direct energy recovery from NO through production of nitrous oxide (N2O) as a potential renewable energy rather than greenhouse gas. In this work, the enhanced energy recovery in the form of N2O via biological NO reduction was investigated by conducting short-term and long-term experiments at different Fe(II)EDTA-NO and organic carbon levels. The results showed both NO reductase and N2O reductase were inhibited at Fe(II)EDTA-NO concentration up to 20 mM, with the latter being inhibited more significantly, thus facilitating N2O accumulation. Furthermore, N2O accumulation was enhanced under carbon-limiting conditions because of electron competition during short-term experiments. Up to 47.5% of NO-N could be converted to gaseous N2O-N, representing efficient N2O recovery. Fe(II)EDTA-NO reduced microbial diversity and altered the community structure toward Fe(II)EDTA-NO-reducing bacteria-dominated culture during long-term experiments. The most abundant bacterial genus Pseudomonas, which was able to resist the toxicity of Fe(II)EDTA-NO, was significantly enriched, with its relative abundance increased from 1.0 to 70.3%, suggesting Pseudomonas could be the typical microbe for the energy recovery technology in NO-based denitrification.


Assuntos
Óxido Nítrico , Óxido Nitroso , Carbono , Desnitrificação , Gases
16.
Water Res ; 189: 116645, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33227607

RESUMO

Poly ferric sulfate (PFS), one of the typical inorganic flocculants widely used in wastewater management and waste activated sludge (WAS) dewatering, could be accumulated in WAS and inevitably entered in anaerobic digestion system at high levels. However, knowledge about its impact on methane production is virtually absent. This study therefore aims to fill this gap and provide insights into the mechanisms involved through both batch and long-term tests using either real WAS or synthetic wastewaters as the digestion substrates. Experimental results showed that the maximum methane potential and production rate of WAS was respectively retarded by 39.0% and 66.4%, whereas the lag phase was extended by 237.0% at PFS of 40 g per kg of total solids. Mechanism explorations exhibited that PFS induced the physical enmeshment and disrupted the enzyme activity involved in anaerobic digestion, resulting in an inhibitory state of the bioprocess of hydrolysis, acidogenesis, and methanogenesis. Furthermore, PFS's inhibition to hydrogenotrophic methanogenesis was much severer than that to acetotrophic methanogenesis, which could be supported by the elevated abundances of Methanosaeta sp and the dropped abundances of Methanobacterium sp in PFS-present digester, and probably due to the severe mass transfer resistance of hydrogen between the syntrophic bacteria and methanogens, as well as the higher hydrogen appetency of PFS-induced sulfate reducing bacteria. Among the derivatives of PFS, "multinucleate and multichain-hydroxyl polymers" and sulfate were unveiled to be the major contributors to the decreased methane potential, while the "multinucleate and multichain-hydroxyl polymers" were identified to be the chief buster to the slowed methane-producing rate and the extended lag time.


Assuntos
Reatores Biológicos , Esgotos , Anaerobiose , Compostos Férricos , Metano
17.
Bioresour Technol ; 318: 124266, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33099096

RESUMO

Anaerobic fermentation of microalgae was always hindered by its rigid cell wall structure. This paper reports a novel technique, i.e., adding potassium ferrate (K2FeO4) into microalgae fermentation systems to enhance short-chain fatty acids (SCFAs) production. The results showed that the maximum SCFAs production and acetic acid proportion were 732.6 mg COD/g VS and 54.6% at a dosage of 112.8 mg Fe(VI)/g VS, which were 168% and 208% of those in the control, respectively. Mechanism studies revealed that K2FeO4 effectively destroyed surface morphology and cell structure, and thus facilitated microalgae solubilization, providing a large number of biodegradable substrates for subsequent SCFA production. Although K2FeO4 inhibited all the microbial activities relevant to hydrolysis, acidification and methanogenesis processes to some degree, its inhibition to methanogens was much severer than that to other microbes. Illumina MiSeq sequencing analyses revealed that K2FeO4 addition increased the relative abundance (from 9.45% to 50.4%) of hydrolytic and SCFAs-forming bacteria.


Assuntos
Microalgas , Ácidos Graxos Voláteis , Estudos de Viabilidade , Fermentação , Compostos de Ferro , Compostos de Potássio , Esgotos
18.
Water Res ; 186: 116381, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32916621

RESUMO

Traditional bioenergy recovery in the form of short chain fatty acids (SCFAs) from waste activated sludge (WAS) is generally limited by economic unattractiveness and complexity of products separation. Herein, a novel biotechnology process of two-stage anaerobic fermentation for converting the WAS into high energy density, easy-separated medium chain fatty acids (MCFAs) and long-chain alcohols (LCAs) was evaluated. In this process, the WAS was first converted to WAS alkaline fermentation liquid (WASAFL), serving as electron acceptors (EAs) and inoculum, then adding ethanol as electron donor (ED) for chain elongation (CE). The co-production of MCFAs and LCAs during CE were studied under three different ED to EA ratios, i.e., 3:1, 4:1 and 5:1. Experimental results demonstrated that when the ratio of ED to EA increased from 3:1 to 5:1, the production of MCFA and LCAs respectively increased from 5.57 ±â€¯0.17 and 2.58 ±â€¯0.18 to7.67 ±â€¯0.48 and 4.21 ±â€¯0.19 g COD/L. A similar observation was made in the total product electron efficiency, increasing from 59.9% to 72.1%. However, the highest total product selectivity (i.e., 68.0%) and highest products production yield (i.e., 59.77%) were not achieved at the ED to EA ratio of 5:1 due to toxicity caused by higher accumulation of n-caproate. The kinetic analysis further confirmed that high ratio of ED to EA induced improvement in product maximum yield, production rate for both MCFAs and LCAs. Microbial community analysis indicated that Clostridium, Caproiciproducens, Acinetobacter, Exilispira, and Oscillibacter were clearly enriched in the CE reactor and had positive correlation with MCFAs and LCAs production.


Assuntos
Ácidos Graxos Voláteis , Esgotos , Anaerobiose , Ácidos Graxos , Fermentação , Cinética
19.
J Hazard Mater ; 400: 123112, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-32947734

RESUMO

Peroxide/Zero-valent iron (Fe0) was reported to promote dewaterability of anaerobically digested sludge (ADS), but the mechanism of how Peroxide/Fe0 facilitates ADS dewatering is unknown. This study therefore aims to uncover the details of how Peroxide/Fe° elevates ADS dewaterability. Experimental results showed that with 0.6 g Fe0/g TSS and 0.08 g peroxide/g TSS, capillary suction time, specific resistance to filtration, and time to filtration of ADS was 50.7 %, 41.4 %, and 54.4 % of that in the control, respectively. In this condition, water content of sludge cake decreased from 91.2 % ± 0.5 % (the control) to 68.6 % ± 1.3 %. The mechanism explorations revealed that the elevated dewaterability was mainly caused by role of OH and Fe(II)/Fe(III) species during Peroxide/Fe° pretreatment. OH decreased the polysaccharides and proteins in extracellular polymeric substance (EPS), then injured the cytoderm & cytomembrane through the releases of lactate dehydrogenase and N-acetylglucosamine, and further facilitated the decrease of intracellular substances, which disengaged the water trapped in ADS. In addition, the cell lysis caused by OH facilitated forming macro-pores. Moreover, OH converted the conformational structure of extracellular proteins, which may strengthen the ADS hydrophobicity, promoting the discharge of unbound water and ADS flocculation. Meanwhile, Fe(II)/Fe(III) benefited aggregating the denatured ADS particulates.


Assuntos
Ferro , Esgotos , Matriz Extracelular de Substâncias Poliméricas , Filtração , Oxirredução , Peróxidos , Eliminação de Resíduos Líquidos , Água
20.
Water Res ; 187: 116440, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32980604

RESUMO

The treatment and disposal of waste activated sludge (WAS) has become one of the major challenges for the wastewater treatment plants (WWTPs) due to large output, high treatment costs and enriched substantial emerging contaminants (ECs). Therefore, reducing sludge volume, recovering energy and resource from WAS, and removing ECs and decreasing environmental risk have gained increasing attentions. Calcium peroxide (CaO2), a versatile and safe peroxide, has been widely applied in terms of WAS treatment including sludge dewatering, anaerobic sludge digestion and anaerobic sludge fermentation due to its specific properties such as generating free radicals and alkali, etc., providing supports for sludge reduction, recycling, and risk mitigation. This review outlines comprehensively the recent progresses and breakthroughs of CaO2 in the fields of sludge treatment. In particular, the relevant mechanisms of CaO2 enhancing WAS dewaterability, methane production from anaerobic digestion, short-chain fatty acids (SCFA) and hydrogen production from anaerobic fermentation, and the removal of ECs in WAS and role of experiment parameters are systematically elucidated and discussed, respectively. Finally, the knowledge gaps and opportunities in CaO2-based sludge treatment technologies that need to be focused in the future are prospected. The review presented can supply a theoretical basis and technical reference for the application of CaO2 for improving the treatment of WAS.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Ácidos Graxos Voláteis , Peróxidos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...