Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2043, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448561

RESUMO

Orbitronics is based on the use of orbital currents as information carriers. Orbital currents can be generated from the conversion of charge or spin currents, and inversely, they could be converted back to charge or spin currents. Here we demonstrate that orbital currents can also be generated by femtosecond light pulses on Ni. In multilayers associating Ni with oxides and nonmagnetic metals such as Cu, we detect the orbital currents by their conversion into charge currents and the resulting terahertz emission. We show that the orbital currents extraordinarily predominate the light-induced spin currents in Ni-based systems, whereas only spin currents can be detected with CoFeB-based systems. In addition, the analysis of the time delays of the terahertz pulses leads to relevant information on the velocity and propagation length of orbital carriers. Our finding of light-induced orbital currents and our observation of their conversion into charge currents opens new avenues in orbitronics, including the development of orbitronic terahertz devices.

2.
Rev Sci Instrum ; 94(7)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37432097

RESUMO

The study of interface spin effects in spintronic multilayer films requires distinguishing the effects generated by different interfaces. However, testing in atmospheric conditions requires a capping layer to protect the films, which introduces new interfaces and limits the study of interface spin-dependent effects. To address this challenge, we have developed an integrated ultra-high vacuum cluster system that includes magnetron sputtering equipment, ion irradiation equipment, and time-resolved magneto-optical Kerr effect (TR-MOKE) equipment. Our sputtering system integrates 12 cathodes in a single chamber, allowing the co-sputtering of four targets. The ultimate vacuum can reach 1 × 10-10 mbar, and the deposition resolution of 0.1 nm can be achieved. Ion irradiation equipment can ionize to produce He+, and by screening and accelerating the implantation of He+ into multilayer films, ion scanning is realized, and up to 30 keV energy can be applied to the films. The TR-MOKE equipment can detect ultra-fast magnetic dynamics processes in vacuum conditions, and its external magnetic field can be rotated 360°. Our vacuum cluster system connects the three subsystems, allowing in situ film deposition, regulation, and characterization. By accurately detecting the effects of different layers, the system can distinguish the interface effects of multilayers. Experimental results demonstrate that the three subsystems can work independently or coordinate to observe the interface effects of multilayers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...