Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Environ Res ; : 119693, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39068973

RESUMO

BACKGROUND: In 2014, the Hazelwood coalmine fire in regional Victoria, Australia shrouded nearby communities in smoke for six weeks. Prior investigations identified substantial adverse effects, including increases in the use of health services. In this study, we examined the effects on hospital and ambulance use in the eight years following the fire. METHODS: Using Victorian hospital (Jan 2009-Jun 2022) and ambulance (Jan 2013-Dec 2021) data, we conducted an interrupted time series of changes to the rate of hospital admissions, emergency presentations, and ambulance attendances. A categorical exposure model compared two locations, most-exposed Morwell and less-exposed Latrobe Valley, to the rest of regional Victoria. A continuous exposure model used spatial estimates of fire-related PM2.5. Analyses were stratified by sex, age group (<65/65+ years), and condition (cardiovascular, respiratory, mental health, injury). RESULTS: There were small but significant increases in overall hospital admissions and emergency presentations across all analyses, but little evidence of change in overall ambulance attendances. Effects varied considerably by condition, with the biggest relative increases observed among hospital admissions for mental health conditions and injuries. While cardiovascular-related hospital admissions and emergency presentations increased post-fire, ambulance attendances decreased. CONCLUSIONS: Our findings suggest the Hazelwood coalmine fire likely increased hospital usage. However, it is unclear whether this was due to the direct effects of smoke exposure on health, or the disruptive socioeconomic and behavioural impacts of an environmental disaster that affected how communities engaged with various health services.

2.
Int J Cancer ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985095

RESUMO

Exposure to ambient ozone (O3) is linked to increased mortality risks from various diseases, but epidemiological investigations delving into its potential implications for cancer mortality are limited. We aimed to examine the association between short-term O3 exposure and site-specific cancer mortality and investigate vulnerable subgroups in Brazil. In total 3,459,826 cancer death records from 5570 Brazilian municipalities between 2000 and 2019, were included. Municipal average daily O3 concentration was calculated from a global estimation at 0.25°×0.25° spatial resolution. The time-stratified case-crossover design was applied to assess the O3-cancer mortality association. Subgroup analyses by age, sex, season, time-period, region, urban hierarchy, climate classification, quantiles of GDP per capita and illiteracy rates were performed. A linear and non-threshold exposure-response relationship was observed for short-term exposure to O3 with cancer mortality, with a 1.00% (95% CI: 0.79%-1.20%) increase in all-cancer mortality risks for each 10-µg/m3 increment of three-day average O3. Kidney cancer was most strongly with O3 exposure, followed by cancers of the prostate, stomach, breast, lymphoma, brain and lung. The associated cancer risks were relatively higher in the warm season and in southern Brazil, with a decreasing trend over time. When restricting O3 concentration to the national minimum value during 2000-2019, a total of 147,074 (116,690-177,451) cancer deaths could be avoided in Brazil, which included 17,836 (7014-28,653) lung cancer deaths. Notably, these associations persisted despite observed adaptation within the Brazilian population, highlighting the need for a focus on incorporating specific measures to mitigate O3 exposure into cancer care recommendations.

3.
Lancet Planet Health ; 8(7): e452-e462, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38969473

RESUMO

BACKGROUND: Wildfire activity is an important source of tropospheric ozone (O3) pollution. However, no study to date has systematically examined the associations of wildfire-related O3 exposure with mortality globally. METHODS: We did a multicountry two-stage time series analysis. From the Multi-City Multi-Country (MCC) Collaborative Research Network, data on daily all-cause, cardiovascular, and respiratory deaths were obtained from 749 locations in 43 countries or areas, representing overlapping periods from Jan 1, 2000, to Dec 31, 2016. We estimated the daily concentration of wildfire-related O3 in study locations using a chemical transport model, and then calibrated and downscaled O3 estimates to a resolution of 0·25°â€ˆ× 0·25° (approximately 28 km2 at the equator). Using a random-effects meta-analysis, we examined the associations of short-term wildfire-related O3 exposure (lag period of 0-2 days) with daily mortality, first at the location level and then pooled at the country, regional, and global levels. Annual excess mortality fraction in each location attributable to wildfire-related O3 was calculated with pooled effect estimates and used to obtain excess mortality fractions at country, regional, and global levels. FINDINGS: Between 2000 and 2016, the highest maximum daily wildfire-related O3 concentrations (≥30 µg/m3) were observed in locations in South America, central America, and southeastern Asia, and the country of South Africa. Across all locations, an increase of 1 µg/m3 in the mean daily concentration of wildfire-related O3 during lag 0-2 days was associated with increases of 0·55% (95% CI 0·29 to 0·80) in daily all-cause mortality, 0·44% (-0·10 to 0·99) in daily cardiovascular mortality, and 0·82% (0·18 to 1·47) in daily respiratory mortality. The associations of daily mortality rates with wildfire-related O3 exposure showed substantial geographical heterogeneity at the country and regional levels. Across all locations, estimated annual excess mortality fractions of 0·58% (95% CI 0·31 to 0·85; 31 606 deaths [95% CI 17 038 to 46 027]) for all-cause mortality, 0·41% (-0·10 to 0·91; 5249 [-1244 to 11 620]) for cardiovascular mortality, and 0·86% (0·18 to 1·51; 4657 [999 to 8206]) for respiratory mortality were attributable to short-term exposure to wildfire-related O3. INTERPRETATION: In this study, we observed an increase in all-cause and respiratory mortality associated with short-term wildfire-related O3 exposure. Effective risk and smoke management strategies should be implemented to protect the public from the impacts of wildfires. FUNDING: Australian Research Council and the Australian National Health and Medical Research Council.


Assuntos
Poluentes Atmosféricos , Doenças Cardiovasculares , Ozônio , Doenças Respiratórias , Incêndios Florestais , Ozônio/efeitos adversos , Ozônio/análise , Humanos , Doenças Cardiovasculares/mortalidade , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Doenças Respiratórias/mortalidade , Exposição Ambiental/efeitos adversos , Saúde Global , Poluição do Ar/efeitos adversos , Poluição do Ar/análise
4.
Diabetes Care ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012781

RESUMO

OBJECTIVE: To evaluate associations of wildfire fine particulate matter (PM2.5) with diabetes across multiple countries and territories. RESEARCH DESIGN AND METHODS: We collected data on 3,612,135 diabetes hospitalizations from 1,008 locations in Australia, Brazil, Canada, Chile, New Zealand, Thailand, and Taiwan during 2000-2019. Daily wildfire-specific PM2.5 levels were estimated through chemical transport models and machine-learning calibration. Quasi-Poisson regression with distributed lag nonlinear models and random-effects meta-analysis were applied to estimate associations between wildfire-specific PM2.5 and diabetes hospitalization. Subgroup analyses were by age, sex, location income level, and country or territory. Diabetes hospitalizations attributable to wildfire-specific PM2.5 and nonwildfire PM2.5 were compared. RESULTS: Each 10 µg/m3 increase in wildfire-specific PM2.5 levels over the current day and previous 3 days was associated with relative risks (95% CI) of 1.017 (1.011-1.022), 1.023 (1.011-1.035), 1.023 (1.015-1.032), 0.962 (0.823-1.032), 1.033 (1.001-1.066), and 1.013 (1.004-1.022) for all-cause, type 1, type 2, malnutrition-related, other specified, and unspecified diabetes hospitalization, respectively. Stronger associations were observed for all-cause, type 1, and type 2 diabetes in Thailand, Australia, and Brazil; unspecified diabetes in New Zealand; and type 2 diabetes in high-income locations. Relative risks (95% CI) of 0.67% (0.16-1.18%) and 1.02% (0.20-1.81%) for all cause and type 2 diabetes hospitalizations were attributable to wildfire-specific PM2.5. Compared with nonwildfire PM2.5, wildfire-specific PM2.5 posed greater risks of all-cause, type 1, and type 2 diabetes and were responsible for 38.7% of PM2.5-related diabetes hospitalizations. CONCLUSIONS: We show the relatively underappreciated links between diabetes and wildfire air pollution, which can lead to a nonnegligible proportion of PM2.5-related diabetes hospitalizations. Precision prevention and mitigation should be developed for those in advantaged communities and in Thailand, Australia, and Brazil.

5.
Environ Pollut ; 357: 124410, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936793

RESUMO

Fly ash from waste incineration is growing rapidly and has become a global problem. Landfill is the main treatment method, but the release behavior of ultra-alkaline fly ash needs further study. In this study, the release pattern of heavy metals from fly ash, the long-term risk after seepage, and the main control mechanisms were explored by indoor simulation experiments and process simulation modeling. The results show that carbonation is the main control mechanism for the release rate of heavy metals from super-alkaline fly ash, and the release rate is slow at the initial stage, but the release concentration of Zn and Pb may increase tens of times with the continuous reaction between the acidic substances in the leachate and the alkaline substances in the fly ash. The heavy metals released into the leachate can cause the concentration of Zn, Cd and Pb in the groundwater to exceed the standard by 39.50, 6.70 and 5.99 times due to seepage. Furnace type is the key controlling factor for background concentrations of heavy metals in ultra-alkaline fly ash, and the exposure concentrations of Cu, Cd, Zn, and Pb in ultra-alkaline fly ash from grate furnaces as well as the GT1 facility are 4.19, 4.19, 4.14, and 37.5 times greater than those of fluidized beds, respectively, with a higher risk of long-term landfill. Regionally, the regional occupancy rate of heavy metal concentrations indicated that the risk of adequate rainfall was high in the southeastern coastal region, which was five times higher than that in the inland northwest. Therefore, the long-term dynamics and risk evolution of Zn, Cd, and Pb in the groundwater around MSWLs in the coastal area should be paid attention to after the landfilling of ultra-alkaline fly ash in order to ensure the safety of the shallow groundwater environment after landfilling.

6.
J Environ Manage ; 364: 121432, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878573

RESUMO

The physical and chemical characteristics of fly ash has changed significantly under ultra-low emission system and the current leaching system is no longer suitable for high alkalinity fly ash. This work investigated the pH values and evolution of physical and chemical characteristics of fly ash from 24 typical municipal solid waste incineration plants in China. The pH value of the leaching solution obtained by HJ/T 300-2007 presented two different acid and alkali characteristics, where high and low alkalinity fly ash accounted for 54.17% and 45.83%, respectively. The alkali content in fly ash increased significantly after ultra-low emission standard, increasing by 18.24% compared with before the implementation of GB 18485-2014. The leaching behavior of high alkalinity fly ash showed the illusion that they could enter the landfill only by the addition of a small amount of chelating agent or even without stabilization treatment, and its long-term landfill risk is significant. The phase change of high alkalinity fly ash and pH value change of the leaching solution after carbonation were the key factors for the leaching concentration change of heavy metals. Therefore, it is recommended to improve the existing leaching system or conduct accelerated carbonization experiments to scientifically evaluate the long-term leaching characteristics of high alkalinity fly ash, and to reduce the risk of heavy metal release from high alkalinity FA after entering the landfill site.


Assuntos
Cinza de Carvão , Incineração , Resíduos Sólidos , Cinza de Carvão/análise , Cinza de Carvão/química , Resíduos Sólidos/análise , China , Metais Pesados/análise , Concentração de Íons de Hidrogênio , Eliminação de Resíduos
7.
Int J Epidemiol ; 53(3)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38725299

RESUMO

BACKGROUND: Model-estimated air pollution exposure products have been widely used in epidemiological studies to assess the health risks of particulate matter with diameters of ≤2.5 µm (PM2.5). However, few studies have assessed the disparities in health effects between model-estimated and station-observed PM2.5 exposures. METHODS: We collected daily all-cause, respiratory and cardiovascular mortality data in 347 cities across 15 countries and regions worldwide based on the Multi-City Multi-Country collaborative research network. The station-observed PM2.5 data were obtained from official monitoring stations. The model-estimated global PM2.5 product was developed using a machine-learning approach. The associations between daily exposure to PM2.5 and mortality were evaluated using a two-stage analytical approach. RESULTS: We included 15.8 million all-cause, 1.5 million respiratory and 4.5 million cardiovascular deaths from 2000 to 2018. Short-term exposure to PM2.5 was associated with a relative risk increase (RRI) of mortality from both station-observed and model-estimated exposures. Every 10-µg/m3 increase in the 2-day moving average PM2.5 was associated with overall RRIs of 0.67% (95% CI: 0.49 to 0.85), 0.68% (95% CI: -0.03 to 1.39) and 0.45% (95% CI: 0.08 to 0.82) for all-cause, respiratory, and cardiovascular mortality based on station-observed PM2.5 and RRIs of 0.87% (95% CI: 0.68 to 1.06), 0.81% (95% CI: 0.08 to 1.55) and 0.71% (95% CI: 0.32 to 1.09) based on model-estimated exposure, respectively. CONCLUSIONS: Mortality risks associated with daily PM2.5 exposure were consistent for both station-observed and model-estimated exposures, suggesting the reliability and potential applicability of the global PM2.5 product in epidemiological studies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Cidades , Exposição Ambiental , Material Particulado , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Doenças Cardiovasculares/mortalidade , Cidades/epidemiologia , Exposição Ambiental/efeitos adversos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Doenças Respiratórias/mortalidade , Masculino , Mortalidade/tendências , Feminino , Pessoa de Meia-Idade , Idoso , Monitoramento Ambiental/métodos , Adulto , Aprendizado de Máquina
8.
J Hazard Mater ; 473: 134606, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788590

RESUMO

Although some studies have found that short-term PM2.5 exposure is associated with lung cancer deaths, its impact on other cancer sites is unclear. To answer this research question, this time-stratified case-crossover study used individual cancer death data between January 1, 2000, and December 31, 2019, extracted from the Brazilian mortality information system to quantify the associations between short-term PM2.5 exposure and cancer mortality from 25 common cancer sites. Daily PM2.5 concentration was aggregated at the municipality level as the key exposure. The study included a total of 34,516,120 individual death records, with the national daily mean PM2.5 exposure 15.3 (SD 4.3) µg/m3. For every 10-µg/m3 increase in three-day average PM2.5 exposure, the odds ratio (OR) for all-cancer mortality was 1.04 (95% CI 1.03-1.04). Apart from all-cancer deaths, PM2.5 exposure may impact cancers of oesophagus (1.04, 1.00-1.08), stomach (1.05, 1.02-1.08), colon-rectum (1.04, 1.01-1.06), lung (1.04, 1.02-1.06), breast (1.03, 1.00-1.06), prostate (1.07, 1.04-1.10), and leukaemia (1.05, 1.01-1.09). During the study period, acute PM2.5 exposure contributed to an estimated 1,917,994 cancer deaths, ranging from 0 to 6,054 cases in each municipality. Though there has been a consistent downward trend in PM2.5-related all-cancer mortality risks from 2000 to 2019, the impact remains significant, indicating the continued importance of cancer patients avoiding PM2.5 exposure. This nationwide study revealed a notable association between acute PM2.5 exposure and heightened overall and site-specific cancer mortality for the first time to our best knowledge. The findings suggest the importance of considering strategies to minimize such exposure in cancer care guidelines. ENVIRONMENTAL IMPLICATION: The 20-year analysis of nationwide death records in Brazil revealed that heightened short-term exposure to PM2.5 is associated with increased cancer mortality at various sites, although this association has gradually decreased over time. Despite the declining impact, the research highlights the persistent adverse effects of PM2.5 on cancer mortality, emphasizing the importance of continued research and preventive measures to address the ongoing public health challenges posed by air pollution.


Assuntos
Poluentes Atmosféricos , Exposição Ambiental , Neoplasias , Material Particulado , Humanos , Material Particulado/toxicidade , Material Particulado/análise , Brasil/epidemiologia , Neoplasias/mortalidade , Exposição Ambiental/efeitos adversos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/efeitos adversos , Masculino , Feminino , Estudos Cross-Over , Pessoa de Meia-Idade , Idoso , Adulto
9.
Lancet Reg Health West Pac ; 46: 101058, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38596004

RESUMO

Background: Non-optimum temperatures are associated with a considerable mortality burden. However, evidence of temperature with all-cause and cause-specific hospital admissions in tropical countries like Thailand is still limited. Methods: Daily all-cause and cause-specific hospital admissions for outpatient and inpatient visits were collected from 77 provinces in Thailand from January 2013 to August 2019. A two-stage time-series approach was applied to assess the association between non-optimum temperatures and hospital admission. We first fitted the province-specific temperature-morbidity association and then obtained the national association in the second stage using a random-effects meta-analysis regression. The attributable fraction (AF) of hospital admissions with 95% empirical confidence interval (eCI) was calculated. Findings: A total of 878,513,460 all-cause outpatient admissions and 32,616,600 all-cause inpatient admissions were included in this study. We observed a J-shaped relationship with the risk of hospital admissions increasing for both cold and hot temperatures. The overall AFs of all-cause hospital admissions due to non-optimum temperatures were 7.57% (95% eCI: 6.47%, 8.39%) for outpatient visits and 6.17% (95% eCI: 4.88%, 7.20%) for inpatient visits. Hot temperatures were responsible for most of the AFs of hospital admissions, with 6.71% (95% eCI: 5.80%, 7.41%) for outpatient visits and 4.50% (95% eCI: 3.62%, 5.19%) for inpatient visits. The burden of hospital admissions was greater in females and in children and adolescents (0-19 years). The fractions of hospital admissions attributable to non-optimum temperatures exhibited variation among disease categories and geographical areas. Interpretation: The results indicate that low and high temperature has a significant impact on hospital admissions, especially among the females, and children and adolescents (0-19 years). The current investigation could provide evidence for policymakers to develop adaptation strategies and mitigate the adverse effects of climate change on public health in Thailand and other tropical countries. Funding: National Research Council of Thailand (NRCT): E-Asia Joint Research Program: Climate change impact on natural and human systems (N33A650979).

10.
Sci Total Environ ; 928: 172299, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38614340

RESUMO

This study assesses the association of short-term exposure to PM2.5 (particles ≤2.5 µm) on infectious diseases among Chinese children and adolescents. Analyzing data from 507 cities (2008-2021) on 42 diseases, it focuses on PM2.5 components (black carbon (BC), ammonium (NH4+), inorganic nitrate (NO3-), organic matter (OM), and sulfate (SO42-)). PM2.5 constituents significantly associated with incidence. Sulfate showed the most substantial effect, increasing all-cause infectious disease risk by 2.72 % per interquartile range (IQR) increase. It was followed by BC (2.04 % increase), OM (1.70 %), NO3- (1.67 %), and NH4+ (0.79 %). Specifically, sulfate and BC had pronounced impacts on respiratory diseases, with sulfate linked to a 10.73 % increase in seasonal influenza risk and NO3- to a 16.39 % rise in tuberculosis. Exposure to PM2.5 also marginally increased risks for gastrointestinal, enterovirus, and vectorborne diseases like dengue (7.46 % increase with SO42-). Sexually transmitted and bloodborne diseases saw an approximate 6.26 % increase in incidence, with specific constituents linked to diseases like hepatitis C and syphilis. The study concludes that managing PM2.5 levels could substantially reduce infectious disease incidence, particularly in China's middle-northern regions. It highlights the necessity of stringent air quality standards and targeted disease prevention, aligning PM2.5 management with international guidelines for public health protection.


Assuntos
Poluentes Atmosféricos , Cidades , Doenças Transmissíveis , Exposição Ambiental , Material Particulado , Humanos , Material Particulado/análise , China/epidemiologia , Adolescente , Criança , Doenças Transmissíveis/epidemiologia , Exposição Ambiental/estatística & dados numéricos , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Estudos Cross-Over , Masculino , População do Leste Asiático
11.
Environ Pollut ; 347: 123810, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493867

RESUMO

Brazil has experienced unprecedented wildfires recently. We aimed to investigate the association of wildfire-related fine particulate matter (PM2.5) with cause-specific cardiovascular mortality, and to estimate the attributable mortality burden. Exposure to wildfire-related PM2.5 was defined as exposure to annual mean wildfire-related PM2.5 concentrations in the 1-year prior to death. The variant difference-in-differences method was employed to explore the wildfire-related PM2.5-cardiovascular mortality association. We found that, in Brazil, compared with the population in the first quartile (Q1: ≤1.82 µg/m3) of wildfire-related PM2.5 exposure, those in the fourth quartile (Q4: 4.22-17.12 µg/m3) of wildfire-related PM2.5 exposure had a 2.2% (RR: 1.022, 95% CI: 1.013-1.032) higher risk for total cardiovascular mortality, 3.1% (RR: 1.031, 95% CI: 1.014-1.048) for ischaemic heart disease mortality, and 2.0% (RR: 1.020, 95% CI: 1.002-1.038) for stroke mortality. From 2010 to 2018, an estimation of 35,847 (95% CI: 22,424-49,177) cardiovascular deaths, representing 17.77 (95% CI: 11.12-24.38) per 100,000 population, were attributable to wildfire-related PM2.5 exposure. Targeted health promotion strategies should be developed for local governments to protect the public from the risk of wildfire-related cardiovascular premature deaths.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Incêndios Florestais , Humanos , Brasil/epidemiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Material Particulado/análise , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/epidemiologia , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise
13.
Lancet Planet Health ; 8(3): e146-e155, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38453380

RESUMO

BACKGROUND: The acute health effects of short-term (hours to days) exposure to fine particulate matter (PM2·5) have been well documented; however, the global mortality burden attributable to this exposure has not been estimated. We aimed to estimate the global, regional, and urban mortality burden associated with short-term exposure to PM2·5 and the spatiotemporal variations in this burden from 2000 to 2019. METHODS: We combined estimated global daily PM2·5 concentrations, annual population counts, country-level mortality rates, and epidemiologically derived exposure-response functions to estimate the mortality attributable to short-term PM2·5 exposure from 2000 to 2019, in the continental regions and in 13 189 urban centres worldwide at a spatial resolution of 0·1°â€ˆ× 0·1°. We tested the robustness of our mortality estimates with different theoretical minimum risk exposure levels, lag effects, and exposure-response functions. FINDINGS: Approximately 1 million (95% CI 690 000-1·3 million) premature deaths per year from 2000 to 2019 were attributable to short-term PM2·5 exposure, representing 2·08% (1·41-2·75) of total global deaths or 17 (11-22) premature deaths per 100 000 population. Annually, 0·23 million (0·15 million-0·30 million) deaths attributable to short-term PM2·5 exposure were in urban areas, constituting 22·74% of the total global deaths attributable to this cause and accounting for 2·30% (1·56-3·05) of total global deaths in urban areas. The sensitivity analyses showed that our worldwide estimates of mortality attributed to short-term PM2·5 exposure were robust. INTERPRETATION: Short-term exposure to PM2·5 contributes a substantial global mortality burden, particularly in Asia and Africa, as well as in global urban areas. Our results highlight the importance of mitigation strategies to reduce short-term exposure to air pollution and its adverse effects on human health. FUNDING: Australian Research Council and the Australian National Health and Medical Research Council.


Assuntos
Poluição do Ar , Material Particulado , Humanos , Material Particulado/análise , Austrália , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Mortalidade Prematura , Ásia
14.
J Hazard Mater ; 467: 133676, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38354440

RESUMO

Enormous health burden has been associated with air pollution and its effects continue to grow. However, the impact of air pollution on labour productivity at the population level is still unknown. This study assessed the association between premature death due to PM2.5 exposure and the loss of productivity-adjusted life years (PALYs), in Brazil. We applied a novel variant of the difference-in-difference (DID) approach to assess the association. Daily all-cause mortality data in Brazil were collected from 2000-2019. The PALYs lost increased by 5.11% (95% CI: 4.10-6.13%), for every 10 µg/m3 increase in the 2-day moving average of PM2.5. A total of 9,219,995 (95% CI: 7,491,634-10,921,141) PALYs lost and US$ 268.05 (95% CI: 217.82-317.50) billion economic costs were attributed to PM2.5 exposure, corresponding to 7.37% (95% CI: 5.99-8.73%) of the total PALYs lost due to premature death. This study also found that 5,005,306 PALYs could be avoided if the World Health Organization (WHO) air quality guideline (AQG) level was met. In conclusion, this study demonstrates that ambient PM2.5 exposure is associated with a considerable labour productivity burden relating to premature death in Brazil, while over half of the burden could be prevented if the WHO AQG was met. The findings highlight the need to reduce ambient PM2.5 levels and provide strong evidence for the development of strategies to mitigate the economic impacts of air pollution.


Assuntos
Poluição do Ar , Brasil/epidemiologia , Anos de Vida Ajustados por Qualidade de Vida , Material Particulado
15.
PLoS Med ; 21(1): e1004341, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38252630

RESUMO

BACKGROUND: More intense tropical cyclones (TCs) are expected in the future under a warming climate scenario, but little is known about their mortality effect pattern across countries and over decades. We aim to evaluate the TC-specific mortality risks, periods of concern (POC) and characterize the spatiotemporal pattern and exposure-response (ER) relationships on a multicountry scale. METHODS AND FINDINGS: Daily all-cause, cardiovascular, and respiratory mortality among the general population were collected from 494 locations in 18 countries or territories during 1980 to 2019. Daily TC exposures were defined when the maximum sustained windspeed associated with a TC was ≥34 knots using a parametric wind field model at a 0.5° × 0.5° resolution. We first estimated the TC-specific mortality risks and POC using an advanced flexible statistical framework of mixed Poisson model, accounting for the population changes, natural variation, seasonal and day of the week effects. Then, a mixed meta-regression model was used to pool the TC-specific mortality risks to estimate the overall and country-specific ER relationships of TC characteristics (windspeed, rainfall, and year) with mortality. Overall, 47.7 million all-cause, 15.5 million cardiovascular, and 4.9 million respiratory deaths and 382 TCs were included in our analyses. An overall average POC of around 20 days was observed for TC-related all-cause and cardiopulmonary mortality, with relatively longer POC for the United States of America, Brazil, and Taiwan (>30 days). The TC-specific relative risks (RR) varied substantially, ranging from 1.04 to 1.42, 1.07 to 1.77, and 1.12 to 1.92 among the top 100 TCs with highest RRs for all-cause, cardiovascular, and respiratory mortality, respectively. At country level, relatively higher TC-related mortality risks were observed in Guatemala, Brazil, and New Zealand for all-cause, cardiovascular, and respiratory mortality, respectively. We found an overall monotonically increasing and approximately linear ER curve of TC-related maximum sustained windspeed and cumulative rainfall with mortality, with heterogeneous patterns across countries and regions. The TC-related mortality risks were generally decreasing from 1980 to 2019, especially for the Philippines, Taiwan, and the USA, whereas potentially increasing trends in TC-related all-cause and cardiovascular mortality risks were observed for Japan. CONCLUSIONS: The TC mortality risks and POC varied greatly across TC events, locations, and countries. To minimize the TC-related health burdens, targeted strategies are particularly needed for different countries and regions, integrating epidemiological evidence on region-specific POC and ER curves that consider across-TC variability.


Assuntos
Tempestades Ciclônicas , Doenças Respiratórias , Humanos , Estados Unidos , Clima , Brasil , Japão
16.
Curr Environ Health Rep ; 11(1): 46-60, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38038861

RESUMO

PURPOSE OF REVIEW: Wildfire smoke is associated with human health, becoming an increasing public health concern. However, a comprehensive synthesis of the current evidence on the health impacts of ambient wildfire smoke on children and adolescents, an exceptionally vulnerable population, is lacking. We conduct a systematic review of peer-reviewed epidemiological studies on the association between wildfire smoke and health of children and adolescents. RECENT FINDINGS: We searched for studies available in MEDLINE, EMBASE, and Scopus from database inception up to October 11, 2022. Of 4926 studies initially identified, 59 studies from 14 countries were ultimately eligible. Over 33.3% of the studies were conducted in the USA, and two focused on multi-countries. The exposure assessment of wildfire smoke was heterogenous, with wildfire-specific particulate matters with diameters ≤ 2.5 µm (PM2.5, 22.0%) and all-source (22.0%) PM2.5 during wildfire period most frequently used. Over half of studies (50.6%) focused on respiratory-related morbidities/mortalities. Wildfire smoke exposure was consistently associated with enhanced risks of adverse health outcomes in children/adolescents. Meta-analysis results presented a pooled relative risk (RR) of 1.04 (95% confidence interval [CI], 0.96-1.12) for all-cause respiratory morbidity, 1.11 (95% Ci: 0.93-1.32) for asthma, 0.93 (95% CI, 0.85-1.03) for bronchitis, and 1.13 (95% CI, 1.05-1.23) for upper respiratory infection, whilst - 21.71 g for birth weight (95% CI, - 32.92 to - 10.50) per 10 µg/m3 increment in wildfire-specific PM2.5/all-source PM2.5 during wildfire event. The majority of studies found that wildfire smoke was associated with multiple adverse health outcomes among children and adolescents, with respiratory morbidities of significant concern. In-utero exposure to wildfire smoke may increase the risk of adverse birth outcomes and have long-term impacts on height. Higher maternal baseline exposure to wildfire smoke and poor family-level baseline birthweight respectively elevated risks in preterm birth and low birth weight associated with wildfire smoke. More studies in low- and middle-income countries and focusing on extremely young children are needed. Despite technological progress, wildfire smoke exposure measurements remain uncertain, demanding improved methodologies to have more precise assessment of wildfire smoke levels and thus quantify the corresponding health impacts and guide public mitigation actions.


Assuntos
Asma , Nascimento Prematuro , Incêndios Florestais , Recém-Nascido , Criança , Feminino , Humanos , Adolescente , Pré-Escolar , Fumaça/efeitos adversos , Material Particulado/efeitos adversos , Peso ao Nascer
17.
Environ Pollut ; 343: 123156, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142032

RESUMO

In the dynamic landscape of maternal and child health, understanding the intricate interplay between environmental factors and pregnancy outcomes is of paramount importance. This study investigates the relationship between maternal greenness exposure and preterm births in Brazil using data spanning from 2010 to 2019. Satellite-derived indices, including the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), were employed to assess greenness exposure during whole pregnancy in maternal residential area. Employing Cox proportional hazard models, we calculated the hazard ratios (HRs) with 95% confidence intervals (CIs) for changes in NDVI, while adjusting for individual and area-level covariates. In total, 24,010,250 live births were included. Prevalence of preterm birth was 11.5%, with a modest but statistically significant decreasing trend (p = 0.013) observed across the nation over the study period. The findings reveal a significant association between greenness exposure and a reduced risk of preterm birth. Specifically, for every 0.1 increase in NDVI, there was a 2.0% decrease in the risk of preterm birth (95%CI: 1.9%-2.2%). Stratified analyses based on maternal education and ethnicity indicated potential effect modifications, with stronger protective effects observed among younger mothers and those with less years of education. Sensitivity analyses using EVI yielded consistent results. In conclusion, this study suggests that higher maternal greenness exposure is linked to a decreased risk of preterm birth in Brazil. These findings imply that enhancing residential greenspaces could be a valuable public health strategy to promote maternal and child health in Brazil.


Assuntos
Nascimento Prematuro , Gravidez , Criança , Feminino , Humanos , Recém-Nascido , Nascimento Prematuro/epidemiologia , Peso ao Nascer , Estudos de Coortes , Brasil/epidemiologia , Fatores Socioeconômicos
18.
Sci Total Environ ; 912: 169233, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38097087

RESUMO

BACKGROUND: Air pollution has caused a significant burden in terms of mortality and mobility worldwide. However, the current coverage of air quality monitoring networks is still limited. OBJECTIVE: This study aims to apply a novel approach to convert the existing traffic cameras into sensors measuring particulate matter with a diameter of 2.5 µm or less (PM2.5) so that the coverage of PM2.5 monitoring could be expanded without extra cost. METHODS: In our study, the traffic camera images were collected at a rate of 4 images/h and the corresponding hourly PM2.5 concentration was collected from the reference grade PM2.5 station 3 km away. A customized neural network model was trained to obtain the PM2.5 concentration from images followed by a random forest model to predict the hourly PM2.5 concentration. The saliency maps and the feature importance were utilized to interpret the neural network. RESULTS: Proposed novel approach has a high prediction performance to predict hourly PM2.5 from traffic camera images, with a root mean square error (RMSE) of 0.76 µg/m3 and a coefficient of determination (R2) of 0.98. The saliency map shows neural network focuses on unobstructed far-end road surfaces while the random forest feature importance highlights the first quarter image's significance. The model performance is robust whether weather conditions are controlled or not. CONCLUSION: Our study provided a practical approach to converting the existing traffic cameras into PM2.5 sensors. The deep learning method based on the Resnet architecture in our study can broaden the coverage of PM2.5 monitoring with no additional infrastructure needed.

19.
Lancet Reg Health West Pac ; 40: 100936, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38116505

RESUMO

Climate change presents a major public health concern in Australia, marked by unprecedented wildfires, heatwaves, floods, droughts, and the spread of climate-sensitive infectious diseases. Despite these challenges, Australia's response to the climate crisis has been inadequate and subject to change by politics, public sentiment, and global developments. This study illustrates the spatiotemporal patterns of selected climate-related environmental extremes (heatwaves, wildfires, floods, and droughts) across Australia during the past two decades, and summarizes climate adaptation measures and actions that have been taken by the national, state/territory, and local governments. Our findings reveal significant impacts of climate-related environmental extremes on the health and well-being of Australians. While governments have implemented various adaptation strategies, these plans must be further developed to yield concrete actions. Moreover, Indigenous Australians should not be left out in these adaptation efforts. A collaborative, comprehensive approach involving all levels of government is urgently needed to prevent, mitigate, and adapt to the health impacts of climate change.

20.
Waste Manag ; 172: 320-325, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37939603

RESUMO

In this study, we simulated the actual landfill disposal process using accelerated carbonization experiments, based on the leaching characteristics of heavy metals from "alkaline" fly ash, and used the LandSim-HELP coupling model to assess the environmental risk of the leaching. The results showed that the leaching data of "alkaline" fly ash before carbonization showed the illusion of admission to landfill with only a small amount of chemical addition or even without curing/stabilization. The leached concentrations of Zn and Cd from "alkaline" fly ash after carbonation were significantly higher. The risk assessment of the leakage of heavy metals in the case of a single artificial composite liner system showed that the exposure concentrations of Pb, Zn, and Cd in samples exceeded Standard for groundwater quality (GB/T 14848-2017) the Class III permissible limits after carbonation; exposure risk for Cd was exceeded in all samples. However, although the use of a double-layer artificial composite liner to improve the level of impermeability effectively reduced the risk of Cd leaching, so that none of the non-carcinogenic risks exceeded the standard, the carcinogenic risk of Cd in the carbonized samples exceeded the factor of 1.1-4.5 of the acceptable hazard quotient, and the contamination characteristics of the alkaline fly ash still need to be kept in view.


Assuntos
Metais Pesados , Eliminação de Resíduos , Cinza de Carvão , Cádmio , Incineração , Medição de Risco , Instalações de Eliminação de Resíduos , Carbono , Material Particulado , Eliminação de Resíduos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...