Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 89(7): 073705, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30068110

RESUMO

Grooved nerve guide conduits (NGCs) have been effective in the clinical treatment of peripheral nerve injury. They are generally fabricated from a micro-structured spinneret using a spinning process, which easily can cause a variety of pores and morphological deviation. The topography of internal grooves as well as the porosity can greatly influence the therapeutic effect. Traditional optical or scanning electron microscopy (SEM) methods can be used to image the grooves; however, these methods are destructive and require slicing NGCs to prepare specimens suitable for imaging. Moreover, lengthy experiments and large batches of NGCs are required to ensure reliable results from both in vitro experiments and clinical studies. In this paper, a non-destructive method for evaluating the grooves and porosity of NGCs is proposed using ultrasonic imaging combined with rotary scanning and an image analysis algorithm. Two ultrasonic methods were used: a 25-MHz point-focus ultrasonic transducer applied to observe axial cross sections of the conduits and a 100-MHz point-focus ultrasonic transducer to detect large pores caused by defects. Furthermore, a theoretical algorithm for detecting the local porosity of a conduit based on density is proposed. Herein, the proposed acoustic method and traditional optical methods are evaluated and compared. A parameter representing the specific surface area of the internal grooves is introduced and computed for both the optical and acoustic methods, and the relative errors of the computed parameter values for three different NGCs were 7.0%, 7.9%, and 15.3%. The detected location and shape of pores were consistent between the acoustic and optical methods, and greater porosity was observed in the middle of the conduit wall. In this paper, the results of the acoustic and optical methods are presented and the errors relating to the acoustic factors, device characteristics, and image processing method are further analyzed.


Assuntos
Regeneração Tecidual Guiada , Teste de Materiais/métodos , Microscopia Acústica/métodos , Regeneração Nervosa , Alicerces Teciduais , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Microscopia Acústica/instrumentação , Imagem Óptica , Nervos Periféricos , Porosidade , Controle de Qualidade
2.
Rev Sci Instrum ; 88(6): 065102, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28667981

RESUMO

A new prototype non-contact profiler based on surface tracking has been specially developed. Surface tracking is carried out by a specially designed dual stage probe system with the aid of a four-Degree Of Freedom high-precision motion platform. The dual stage probe system keeps a short-range optical probe constantly tracking the surface by a self-developed voice coil motor servo, by which a wide measuring range of up to 10 mm is realized. The system performance evaluation including resolution, repeatability, and scanning speed proved the good capability of the new prototype non-contact profiler. To realize a full area covered 3D profile measurement of special-shaped optics within one scanning procedure, a signal intensity monitor integrated in the surface tracking controller is specially developed. In the experiment, a snip-single-corner-rectangular-shaped freeform surface was successfully measured over full area by the new non-contact profiler. This work provides an effective solution for 3D profile measurement of special-shaped optical surfaces over full reflecting area. Experimental results demonstrate that the proposed measuring system is of great significance in quality evaluation of optical surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...