Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Brain ; 16(1): 21, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750928

RESUMO

Electromagnetic pulse (EMP), a unique type of electromagnetic radiation, may induce diverse neuropsychiatric disorders, such as irritability, hyperkinesis, retardation of learning and memory. However, the underlying mechanism of EMP exposure on neuronal injury has not been elucidated. Here, we aimed to delineate the regulatory expression networks based on high-throughput sequencing data to explore the possible molecular mechanisms related to EMP-induced delirium-like neuropsychiatric disorder in rats. It's shown that EMP exposure induced anxiety, cognitive decline and short-term memory impairment. The expression profiles of the long noncoding RNAs (lncRNAs) and mRNAs, along with their biological function and regulatory network, were explored in rats after EMP exposure. We identified 41 differentially expressed lncRNAs (DELs) and 266 differentially expressed mRNAs (DEMs) between EMP and sham groups. Sixty-one co-expression relationships between 18 DELs and 56 DEMs were mostly associated with synapse- and metabolic-related pathways. We predicted 51 DEL-miRNA pairs and 290 miRNA-mRNA pairs using the miRanda database to constructed a DEL-miRNA-DEM network. LncRNA AABR07042999.1 and mRNA Tph2, Slc6a4, Dbh and Th were upregulated, and the contents of serotonin, dopamine and norepinephrine were increased in both PFC and HIP after EMP exposure. The current study provided a better understanding of the ceRNA network, which might reveal the pathological mechanism and provide more treatment options for the EMP-induced neurobehavioral disorder.


Assuntos
Delírio , MicroRNAs , RNA Longo não Codificante , Ratos , Animais , RNA Longo não Codificante/genética , Redes Reguladoras de Genes , MicroRNAs/genética , Fenômenos Eletromagnéticos , RNA Mensageiro/genética , Biologia Computacional
2.
Environ Toxicol Pharmacol ; 54: 155-161, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28735146

RESUMO

Public concern is growing about the exposure to electromagnetic fields (EMF) and its effect on male reproductive health. Detrimental effect of EMF exposure on sex hormones, reproductive performance and sex-ratio was reported. The present study was designed to clarify whether paternal exposure to electromagnetic pulse (EMP) affects offspring sex ratio in mice. 50 male BALB/c mice aged 5-6 weeks were exposed to EMP daily for 2 weeks before mated with non-exposed females at 0d, 7d, 14d, 21d and 28d after exposure. Sex hormones including total testosterone, LH, FSH, and GnRH were detected using radioimmunoassay. The sex ratio was examined by PCR and agarose gel electrophoresis. The results of D0, D21 and D28 showed significant increases compared with sham-exposed groups. The serum testosterone increased significantly in D0, D14, D21, and D28 compared with sham-exposed groups (p<0.05). Overall, this study suggested that EMP exposure may lead to the disturbance of reproductive hormone levels and affect the offspring sex ratio.


Assuntos
Campos Eletromagnéticos , Razão de Masculinidade , Testosterona/sangue , Animais , Feminino , Hormônio Liberador de Gonadotropina/sangue , Hormônio Luteinizante/sangue , Masculino , Camundongos Endogâmicos BALB C , Reprodução
3.
Biomed Environ Sci ; 29(6): 435-42, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27470104

RESUMO

OBJECTIVE: The objective was to observe damage of hippocampus in rats after exposure to infrasound, and to assess HSP70 expression in hippocampus. METHODS: SD rats in the experimental group were exposed to 140 dB (8 Hz) infrasound for 2 h per day for 3 days. The morphology of the hippocampus was examined by transmission electronic microscopic (TEM). Cell apoptosis was observed by TUNEL staining at 0 h, 24 h, 48 h, and 2 w after exposure. HSP70 expression was detected by immunohistochemistry (IHC) and Western blotting (WB). RESULTS: TEM showed that hippocampus was significantly damaged by exposure, and exhibited recovery 1 week after exposure. The TUNEL data showed that neuronal apoptosis after exposure was significantly higher than in the control rats at 24 h and 48 h, and the apoptotic cells decreased one week after exposure. IHC and WB showed HSP70 expression was significantly higher in the exposed rats, peaked at 24 h. CONCLUSION: Exposure to 140 dB (8 Hz) infrasound for 2 h per day for 3 days appeared to induce damage to the hippocampus of rats, based on changes in ultrastructure and increased cell apoptosis. However, recovery from the damage occurred overtime. HSP70 expression also increased after the exposure and decreased by 48.


Assuntos
Apoptose , Hipocampo/efeitos da radiação , Som/efeitos adversos , Animais , Western Blotting , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Ratos , Ratos Sprague-Dawley
4.
Brain Res ; 1642: 10-19, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26972535

RESUMO

A progressively expanded literature has been devoted in the past years to the noxious or beneficial effects of electromagnetic field (EMF) to Alzheimer׳s disease (AD). This study concerns the relationship between electromagnetic pulse (EMP) exposure and the occurrence of AD in rats and the underlying mechanisms, focusing on the role of oxidative stress (OS). 55 healthy male Sprague Dawley (SD) rats were used and received continuous exposure for 8 months. Morris water maze (MWM) test was conducted to test the ability of cognitive and memory. The level of OS was detected by superoxide dismutase (SOD) activity and glutathione (GSH) content. We found that long-term EMP exposure induced cognitive damage in rats. The content of ß-amyloid (Aß) protein in hippocampus was increased after long-term EMP exposure. OS of hippocampal neuron was detected. Western blotting and immunohistochemistry (IHC) assay showed that the content of Aß protein and its oligomers in EMP-exposed rats were higher than that of sham-exposed rats. The content of Beta Site App Cleaving Enzyme (BACE1) and microtubule-associated protein 1 light chain 3-II (LC3-II) in EMP-exposed rats hippocampus were also higher than that of sham-exposed rats. SOD activity and GSH content in EMP-exposed rats were lower than sham-exposed rats (p<0.05). Several mechanisms were proposed based on EMP exposure-induced OS, including increased amyloid precursor protein (APP) aberrant cleavage. Although further study is needed, the present results suggest that long-term EMP exposure is harmful to cognitive ability in rats and could induce AD-like pathological manifestation.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Secretases da Proteína Precursora do Amiloide/efeitos da radiação , Peptídeos beta-Amiloides/efeitos da radiação , Precursor de Proteína beta-Amiloide/efeitos da radiação , Ácido Aspártico Endopeptidases/efeitos da radiação , Cognição/efeitos da radiação , Campos Eletromagnéticos , Estresse Oxidativo/efeitos da radiação , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Cognição/fisiologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/efeitos da radiação , Masculino , Aprendizagem em Labirinto/efeitos da radiação , Ratos , Ratos Sprague-Dawley
5.
Tumour Biol ; 34(6): 3357-61, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23749504

RESUMO

Upregulation of translationally controlled tumor protein (TCTP) has been reported in a variety of malignant tumors. However, the impact of TCTP in glioma remains unclear. The objective of this study was to investigate the expression and prognostic value of TCTP in glioma patients. Western blot analysis was used to characterize the expression patterns of TCTP in 45 glioma and 22 normal brain tissues. Immunohistochemistry on a tissue microarray containing 127 cases of glioma was performed to analyze the association between TCTP expression and clinicopathological features. Compared with normal brain tissues, TCTP expression was significantly higher in glioma tissues (p <0.001). In addition, high TCTP expression in glioma was significantly associated with advanced pathological grade (p = 0.018). Kaplan-Meier analysis showed that patients with glioma and higher TCTP expression tend to have shorter overall survival time (p <0.001). In multivariate analysis, TCTP expression was proved to be an independent prognostic factor for patients with glioma (p <0.001). In conclusion, this study confirmed the overexpression of TCTP and its association with tumor progression in glioma. It also provided the first evidence that TCTP expression in glioma was an independent prognostic factor of patients, which might be a potential diagnostic and therapeutic target of glioma.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Adulto , Western Blotting , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Progressão da Doença , Feminino , Glioma/patologia , Glioma/cirurgia , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Gradação de Tumores , Prognóstico , Análise Serial de Tecidos , Resultado do Tratamento , Proteína Tumoral 1 Controlada por Tradução
6.
Arch Med Res ; 44(3): 178-84, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23523687

RESUMO

BACKGROUND AND AIMS: With the developing and widely used electromagnetic field (EMF) technology, more and more studies are focusing on the relationship between EMF and Alzheimer's disease (AD). Electromagnetic pulse (EMP) is one type of widely used EMF. This study aimed to clarify whether EMP exposure could induce cognitive and memory impairment, thus finding a possible relationship between EMP and AD. METHODS: Forty healthy male Sprague Dawley rats were randomly divided into four groups. Animals, respectively, received 100, 1000, and 10,000 pulses EMP (field strength 50 kV/m, repetition rate 100 Hz) exposure and sham exposure when 2 months old. Monthly Morris water maze (MWM) was used to test the changes of cognitive and memory ability. Superoxide dismutase (SOD) activity and glutathione (GSH) content were used as oxidative stress indexes. Expressions of some types of Alzheimer's disease-related proteins were also detected. RESULTS: After exposure, EMP exposure caused clear cognitive and memory impairment compared with sham exposure group (p <0.05). Determination of oxidation indexes showed decreased SOD activity and GSH content in exposure groups compared with sham group. Immunohistochemical (IHC) staining showed increased beta amyloid protein (Aß) in EMP exposure groups compared with sham group. Western blot experiments showed increased expressions of Aß oligomer and beta amyloid protein precursor (APP) in EMP exposure groups. Increased expression of microtubule-associated protein 1 light chain 3-II (LC3-II) was also found. CONCLUSIONS: The present results showed that EMP exposure can cause long-term impairment in impaired cognition and memory of rats, resulting in AD-like symptoms. This may be induced by enhancing oxidative stress and is related to autophagy dysfunction.


Assuntos
Precursor de Proteína beta-Amiloide/biossíntese , Campos Eletromagnéticos/efeitos adversos , Regulação para Cima , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/biossíntese , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Autofagia , Transtornos Cognitivos/enzimologia , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/fisiopatologia , Glutationa/metabolismo , Masculino , Aprendizagem em Labirinto , Memória , Transtornos da Memória/enzimologia , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Proteínas Associadas aos Microtúbulos/metabolismo , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo
7.
Toxicology ; 285(1-2): 31-8, 2011 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-21501651

RESUMO

Previously we found that exposure to electromagnetic pulse (EMP) induced an increase in blood-brain-barrier (BBB) permeability and the degradation of tight junction protein ZO-1 in rats. Matrix metalloproteinases (MMPs), in particular gelatinases (MMP-2 and MMP-9), play a key role in degradation of tight junction proteins, are known mediators of BBB compromise. We hypothesized that the degradation of ZO-1 by gelatinases contributed to EMP-induced BBB opening. To test this hypothesis, the mRNA level of ZO-1, protein levels of MMP-2, MMP-9 and tissue inhibitor of metalloproteinases (TIMP-1 and TIMP-2) were detected in rat cerebral cortex after exposing rats to EMP at 200 kV/m for 200 pulses. It was found that the mRNA level of ZO-1 was unaltered at different time points after EMP exposure. The protein levels of MMP-2 and MMP-9 significantly increased at 3 h and 0.5 h, respectively. However, TIMP-1 (inhibitor of MMP-9) and TIMP-2 (inhibitor of MMP-2) only moderately increased after EMP exposure. In addition, in situ zymography results showed that the gelatinase activity increased in cerebral microvessels at 3 h after EMP exposure. When rats were treated with gelatinases inhibitor (SB-3CT) before EMP exposure, the EMP-induced BBB opening was attenuated and the ZO-1 degradation was reversed. Our results suggested that EMP-induced BBB opening was related to gelatinase mediated ZO-1 degradation.


Assuntos
Barreira Hematoencefálica/metabolismo , Campos Eletromagnéticos , Gelatinases/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Animais , Gelatinases/metabolismo , Compostos Heterocíclicos com 1 Anel/farmacologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinases da Matriz/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Sulfonas/farmacologia , Fatores de Tempo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Proteína da Zônula de Oclusão-1
8.
Biomed Environ Sci ; 22(3): 265-8, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19725471

RESUMO

OBJECTIVE: To observe the effect of electromagnetic pulse (EMP) exposure on cerebral micro vascular permeability in rats. METHODS: The whole-body of male Sprague-Dawley rats were exposed or sham exposed to 200 pulses or 400 pulses (1 Hz) of EMP at 200 kV/m. At 0.5, 1, 3, 6, and 12 h after EMP exposure, the permeability of cerebral micro vascular was detected by transmission electron microscopy and immunohistochemistry using lanthanum nitrate and endogenous albumin as vascular tracers, respectively. RESULTS: The lanthanum nitrate tracer was limited to the micro vascular lumen with no lanthanum nitrate or albumin tracer extravasation in control rat brain. After EMP exposure, the lanthanum nitrate ions reached the tight junction, basal lamina and pericapillary tissue. Similarly, the albumin immunopositive staining was identified in pericapillary tissue. The changes in brain micro vascular permeability were transient, the leakage of micro vascular vessels appeared at 1 h, and reached its peak at 3 h, and nearly recovered at 12 h, after EMP exposure. In addition, the leakage of micro vascular was more obvious after exposure of EMP at 400 pulses than after exposure of EMP at 200 pulses. CONCLUSION: Exposure to 200 and 400 pulses (1 Hz) of EMP at 200 kV/m can increase cerebral micro vascular permeability in rats, which is recoverable.


Assuntos
Encéfalo/irrigação sanguínea , Permeabilidade Capilar/fisiologia , Campos Eletromagnéticos/efeitos adversos , Animais , Eletrofisiologia , Masculino , Ratos , Ratos Sprague-Dawley
9.
Artigo em Chinês | MEDLINE | ID: mdl-20137299

RESUMO

OBJECTIVE: To study the effect of electromagnetic pulse (EMP) on the permeability of blood-brain barrier, tight junction (TJ)-associated protein expression and localization in rats. METHODS: 66 male SD rats, weighing (200 approximately 250) g, were sham or whole-body exposed to EMP at 200 kV/m for 200 pulses. The repetition rate was 1 Hz. The permeability of the blood-brain barrier in rats was assessed by albumin immunohistochemistry. The expression of typical tight junction protein ZO-1 and occludin in both cerebral cortex homogenate and cerebral cortex microvessel homogenate was analyzed by the Western blotting and the distribution of ZO-1 and occludin was examined by immunofluorescence microscopy. RESULTS: In the sham exposure rats, no brain capillaries showed albumin leakage, at 0.5 h after 200 kV/m EMP exposure for 200 pulses; a few brain capillaries with extravasated serum albumin was found, with the time extended, the number of brain capillaries with extravasated serum albumin increased, and reached the peak at 3 h, then began to recover at 6 h. In addition, no change in the distribution of the occludin was found after EMP exposure. Total occludin expression had no significant change compared with the control. However, the expression level of ZO-1 significantly decreased at 1 h and 3 h after EMP exposure in both cerebral cortex homogenate and cerebral cortex microvessel homogenate. Furthermore, immunofluorescence studies also showed alterations in ZO-1 protein localization in cerebral cortex microvessel. CONCLUSION: The EMP exposure (200 kV/m, 200 pulses) could increase blood-brain barrier permeability in rat, and this change is associated with specific alterations in tight junction protein ZO-1.


Assuntos
Barreira Hematoencefálica/efeitos da radiação , Permeabilidade Capilar/efeitos da radiação , Campos Eletromagnéticos/efeitos adversos , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Animais , Encéfalo/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Proteína da Zônula de Oclusão-1
10.
Biomed Environ Sci ; 22(5): 374-80, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20163061

RESUMO

OBJECTIVE: To investigate and compare the effect of radio-frequency (RF) field exposure on expression of heat shock proteins (Hsps) in three human glioma cell lines (MO54, A172, and T98). METHODS: Cells were exposed to sham or 1950 MHz continuous-wave for 1 h. Specific absorption rates (SARs) were 1 and 10 W/kg. Localization and expression of Hsp27 and phosphorylated Hsp27 ((78) Ser) (p-Hsp27) were examined by immunocytochemistry. Expression levels of Hsp27, p-Hs27, and Hsp70 were determined by Western blotting. RESULTS: The Hsp27 was primarily located within the cytoplasm, p-Hsp27 in both cytoplasm and nuclei of MO54, A172, and T98 cells. RF field exposure did not affect the distribution or expression of Hsp27. In addition, Western blotting showed no significant differences in protein expression of Hsp27 or Hsp70 between sham- and RF field-exposed cells at a SAR of 1 W/kg and 10 W/kg for 1 h in three cells lines. Exposure to RF field at a SAR of 10 W/kg for 1 h slightly decreased the protein level of phosphorylated Hsp27 in MO54 cells. CONCLUSION: The 1950 MHz RF field has only little or no apparent effect on Hsp70 and Hsp27 expression in MO54, A172, and T98 cells.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Glioma , Proteínas de Choque Térmico/metabolismo , Proteínas de Neoplasias/metabolismo , Neuroglia/efeitos da radiação , Linhagem Celular Tumoral , Proteínas de Choque Térmico/genética , Humanos , Proteínas de Neoplasias/genética , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...