Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(31): 22420-22433, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39010908

RESUMO

Traditional bone tissue engineering techniques require the extraction and proliferation of seed cells, followed by prolonged in vitro culture to form bone tissue constructs. In contrast, in situ mineralization bone tissue engineering utilizes alkaline phosphatase within the body's microenvironment to induce scaffold mineralization. This approach promotes further proliferation and differentiation of osteoblasts and the formation of bone tissue constructs, thereby simplifying the traditional bone tissue engineering process. This study uses electrospinning technology to prepare a novel biologically active scaffold for bone tissue engineering using poly(lactic-co-glycolic acid) (PLGA) and calcium glycerophosphate. The morphology and composition of the scaffolds were characterized using SEM, EDS, and XRD, revealing well-defined fibrous structures and the successful incorporation of calcium glycerophosphate into the PLGA fibers. In vitro simulation of the bone microenvironment using alkaline phosphatase effectively catalyzed the in situ mineralization of calcium glycerophosphate within the scaffold. SEM observations showed substantial mineral aggregation on the surface of the fibrous membranes, and XRD characterization confirmed that the diffraction peaks of the minerals correspond to hydroxyapatite. The cytotoxicity, cell proliferation, and osteogenic differentiation assessments on MC3T3-E1 pre-osteoblasts cultured on the prepared scaffolds indicate that the scaffolds are non-toxic to cells and possess good osteogenic differentiation ability, enabling in situ mineralization. This suggests that the scaffolds have broad prospects for application in bone defect repair.

3.
Hortic Res ; 11(7): uhae139, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988621

RESUMO

Rapeseed is a globally significant oilseed crop cultivated to meet the increasing demand for vegetable oil. In order to enhance yield and sustainability, breeders have adopted the development of rapeseed hybrids as a common strategy. However, current hybrid production systems in rapeseed have various limitations, necessitating the development of a simpler and more efficient approach. In this study, we propose a novel method involving the targeted disruption of Defective in Anther Dehiscence1 of Brassica napus (BnDAD1), an essential gene in the jasmonic acid biosynthesis pathway, using CRISPR/Cas9 technology, to create male-sterile lines. BnDAD1 was found to be dominantly expressed in the stamen of rapeseed flower buds. Disrupting BnDAD1 led to decreased levels of α-linolenic acid and jasmonate in the double mutants, resulting in defects in anther dehiscence and pollen maturation. By crossing the double mutant male-sterile lines with male-fertile lines, a two-line system was demonstrated, enabling the production of F 1 seeds. The male-sterile trait of the bndad1 double mutant lines was maintainable by applying exogenous methyl jasmonate and subsequently self-pollinating the flowers. This breakthrough holds promising potential for harnessing heterosis in rapeseed and offers a simpler and more efficient method for producing hybrid seeds.

4.
Opt Express ; 32(9): 16371-16397, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859266

RESUMO

Chlorophyll a (Chl-a) in lakes serves as an effective marker for assessing algal biomass and the nutritional level of lakes, and its observation is feasible through remote sensing methods. HJ-1 (Huanjing-1) satellite, deployed in 2008, incorporates a CCD capable of a 30 m resolution and has a revisit interval of 2 days, rendering it a superb choice or supplemental sensor for monitoring trophic state of lakes. For effective long-term and regional-scale mapping, both the imagery and the evaluation of machine learning algorithms are essential. The several typical machine learning algorithms, i.e., Support Vector Regression (SVR), Gradient Boosting Decision Trees (GBDT), XGBoost (XGB), Random Forest (RF), K-Nearest Neighbor (KNN), Kernel Ridge Regression (KRR), and Multi-Layer Perception Network (MLP), were developed using our in-situ measured Chl-a. A cross-validation grid to identify the most effective hyperparameter combinations for each algorithm was used, as well as the selected optimal superparameter combinations. In Chl-a mapping of three typical lakes, the R2 of GBDT, XGB, RF, and KRR all reached 0.90, while XGB algorithm also exhibited stable performance with the smallest error (RMSE = 3.11 µg/L). Adjustments were made to align the Chl-a spatial-temporal patterns with past data, utilizing HJ1-A/B CCD images mapping through XGB algorithm, which demonstrates its stability. Our results highlight the considerable effectiveness and utility of HJ-1 A/B CCD imagery for evaluation and monitoring trophic state of lakes in a cold arid region, providing the application cases contribute to the ongoing efforts to monitor water qualities.


Assuntos
Algoritmos , Clorofila A , Monitoramento Ambiental , Lagos , Aprendizado de Máquina , Lagos/análise , Clorofila A/análise , Monitoramento Ambiental/métodos , Clorofila/análise , Imagens de Satélites/métodos , Tecnologia de Sensoriamento Remoto/métodos
5.
Nat Commun ; 15(1): 5277, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902274

RESUMO

The synthesis of chiral α-azaheteroaryl oxiranes via enantioselective catalysis is a formidable challenge due to the required complex stereoselectivity and diverse N-heterocyclic structures. These compounds play a crucial role in developing bioactive molecules, where precise chirality significantly influences biological activity. Here we show that using chiral phosphoric acid as a catalyst, our method efficiently addresses these challenges. This technique not only achieves high enantio- and diastereoselectivity but also demonstrates superior chemo- and stereocontrol during the epoxidation of alkenyl aza-heteroarenes. Our approach leverages a synergistic blend of electrostatic and hydrogen-bonding interactions, enabling the effective activation of both substrates and hydrogen peroxide. The resulting chiral oxiranes exhibit enhanced diversity and functionality, aiding the construction of complex chiral azaaryl compounds with contiguous stereocenters. Kinetic and density functional theory studies elucidate the mechanism, highlighting chiral phosphoric acid's pivotal role in this intricate enantioselective process.

6.
Cell Rep ; 43(7): 114422, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943642

RESUMO

Platelet-activating factor (PAF) is a potent phospholipid mediator crucial in multiple inflammatory and immune responses through binding and activating the PAF receptor (PAFR). However, drug development targeting the PAFR has been limited, partly due to an incomplete understanding of its activation mechanism. Here, we present a 2.9-Å structure of the PAF-bound PAFR-Gi complex. Structural and mutagenesis analyses unveil a specific binding mode of PAF, with the choline head forming cation-π interactions within PAFR hydrophobic pocket, while the alkyl tail penetrates deeply into an aromatic cleft between TM4 and TM5. Binding of PAF modulates conformational changes in key motifs of PAFR, triggering the outward movement of TM6, TM7, and helix 8 for G protein coupling. Molecular dynamics simulation suggests a membrane-side pathway for PAF entry into PAFR via the TM4-TM5 cavity. By providing molecular insights into PAFR signaling, this work contributes a foundation for developing therapeutic interventions targeting PAF signal axis.

7.
BMC Med Imaging ; 24(1): 137, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844854

RESUMO

BACKGROUND: This study investigated whether the Combat compensation method can remove the variability of radiomic features extracted from different scanners, while also examining its impact on the subsequent predictive performance of machine learning models. MATERIALS AND METHODS: 135 CT images of Credence Cartridge Radiomic phantoms were collected and screened from three scanners manufactured by Siemens, Philips, and GE. 100 radiomic features were extracted and 20 radiomic features were screened according to the Lasso regression method. The radiomic features extracted from the rubber and resin-filled regions in the cartridges were labeled into different categories for evaluating the performance of the machine learning model. Radiomics features were divided into three groups based on the different scanner manufacturers. The radiomic features were randomly divided into training and test sets with a ratio of 8:2. Five machine learning models (lasso, logistic regression, random forest, support vector machine, neural network) were employed to evaluate the impact of Combat on radiomic features. The variability among radiomic features were assessed using analysis of variance (ANOVA) and principal component analysis (PCA). Accuracy, precision, recall, and area under the receiver curve (AUC) were used as evaluation metrics for model classification. RESULTS: The principal component and ANOVA analysis results show that the variability of different scanner manufacturers in radiomic features was removed (P˃0.05). After harmonization with the Combat algorithm, the distributions of radiomic features were aligned in terms of location and scale. The performance of machine learning models for classification improved, with the Random Forest model showing the most significant enhancement. The AUC value increased from 0.88 to 0.92. CONCLUSIONS: The Combat algorithm has reduced variability in radiomic features from different scanners. In the phantom CT dataset, it appears that the machine learning model's classification performance may have improved after Combat harmonization. However, further investigation and validation are required to fully comprehend Combat's impact on radiomic features in medical imaging.


Assuntos
Aprendizado de Máquina , Imagens de Fantasmas , Humanos , Tomografia Computadorizada por Raios X , Tomógrafos Computadorizados , Análise de Componente Principal , Redes Neurais de Computação , Algoritmos , Radiômica
8.
Theor Appl Genet ; 137(6): 129, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740615

RESUMO

KEY MESSAGE: Through comprehensive genomic and transcriptomic analyses, we identified a set of 23 genes that act up- or downstream of erucic acid content (EAC) production in rapeseed seeds. We selected example genes to showcase the distribution of single nucleotide polymorphisms, haplotypes associated with EAC phenotypes, and the creation of molecular markers differentiating low EAC and high EAC genotypes. Erucic acid content (EAC) is a crucial trait in rapeseed, with low LEAC oil recognized for its health benefits and high EA oil holding industrial value. Despite its significance, the genomic consequences of intensive LEAC-cultivar selection and the genetic basis underlying EA regulation remain largely unexplored. To address this knowledge gap, we conducted selective signal analyses, genome-wide association studies (GWAS), and transcriptome analyses. Our investigation unveiled the genetic footprints resulting from LEAC selection in germplasm populations, drawing attention to specific loci that contribute to enriching diversity. By integrating GWAS and transcriptome analyses, we identified a set of 23 genes that play a significant role in determining EAC in seeds or are downstream consequences of EA-level alterations. These genes have emerged as promising candidates for elucidating the potential mechanisms governing EAC in rapeseed. To exemplify the findings, we selected specific genes to demonstrate the distribution of single nucleotide polymorphisms and haplotypes associated with different EAC phenotypes. Additionally, we showcased to develop molecular markers distinguishing between LEAC and high EAC genotypes.


Assuntos
Brassica napus , Ácidos Erúcicos , Polimorfismo de Nucleotídeo Único , Sementes , Sementes/genética , Sementes/crescimento & desenvolvimento , Brassica napus/genética , Ácidos Erúcicos/metabolismo , Fenótipo , Haplótipos , Transcriptoma , Estudo de Associação Genômica Ampla , Genótipo , Perfilação da Expressão Gênica , Genômica/métodos , Regulação da Expressão Gênica de Plantas , Locos de Características Quantitativas
9.
Front Neurol ; 15: 1395770, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725643

RESUMO

Background: Extensive research on cluster headaches (CHs) has been conducted worldwide; however, there is currently no bibliometric research on CHs. Therefore, this study aimed to analyze the current research hotspots and frontiers of CHs over the past decade. Methods: Raw data on CHs was obtained from the Web of Science Core Collection database from 2014 to 2023. CiteSpace V6.2 R7 (64 bit) and Microsoft Excel were used to assess the annual publication volume, authors, countries, and references. VOSviewer 1.6.19 software was used to assess the institutions, cited authors, and keywords, and co-occurrence and clustering functions were applied to draw a visual knowledge map. Results: In the past decade, the overall annual publication volume of articles related to CHs has increased year by year, showing promising development prospects. The total 1909 articles contained six types of literature, among which the proportion of original research articles was the highest (1,270 articles, 66.53%), published in 201 journals. Cephalalgia (439 articles, 23.00%) had the highest publication volume, and the Lancet was the journal with the highest impact factor (IF = 168.9). Furthermore, the United States of America was the country with the most published papers (584 articles, 30.60%), University of London was the research institution with the most published papers (142 articles, 7.44%), and Goodsby, Peter J was found to be the most prolific author (38 articles, 1.99%). Conclusion: This study may provide some direction for subsequent researcher on CHs. The hotspots and frontiers of future research on CHs are suggested as follows: in basic medicine, more attention should be paid to pathophysiology, especially on increasing research on the pathogenesis mediated by CGRP; in clinical medicine, more attention should be paid to the design of evidence-based medicine methodology, especially the strict design, including double-blind, questionnaire, and follow-up, in randomized controlled trials, using high-quality articles for meta-analyses, and recommending high-level evidence; therapeutic techniques need to be further explored, suggesting the implementation of transcranial magnetic stimulation of the cortex, and stimulation of the sphinopalatine ganglia and occipital nerve to achieve peripheral neuromodulation. Furthermore, chronic migraine and insomnia are inextricably linked to CHs.

10.
Heliyon ; 10(9): e30499, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38726156

RESUMO

Rapid, universal and accurate identification of chemical composition changes in multi-component traditional Chinese medicine (TCM) decoction is a necessary condition for elucidating the effectiveness and mechanism of pharmacodynamic substances in TCM. In this paper, SERS technology, combined with grating-like SERS substrate and machine learning method, was used to establish an efficient and sensitive method for the detection of TCM decoction. Firstly, the grating-like substrate prepared by magnetron sputtering technology was served as a reliable SERS sensor for the identification of TCM decoction. The enhancement factor (EF) of 4-ATP probe molecules was as high as 1.90 × 107 and the limit of detection (LOD) was as low as 1 × 10-10 M. Then, SERS technology combined with support vector machine (SVM), decision tree (DT), Naive Bayes (NB) and other machine learning algorithms were used to classify and identify the three TCM decoctions, and the classification accuracy rate was as high as 97.78 %. In summary, it is expected that the proposed method combining SERS and machine learning method will have a high development in the practical application of multi-component analytes in TCM.

11.
Viruses ; 16(4)2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38675908

RESUMO

Neutralizing antibodies (nAbs) play an important role against SARS-CoV-2 infections. Previously, we have reported one potent receptor binding domain (RBD)-binding nAb Ab08 against the SARS-CoV-2 prototype and a panel of variants, but Ab08 showed much less efficacy against the variants harboring the L452R mutation. To overcome the antibody escape caused by the L452R mutation, we generated several structure-based Ab08 derivatives. One derivative, Ab08-K99E, displayed the mostly enhanced neutralizing potency against the Delta pseudovirus bearing the L452R mutation compared to the Ab08 and other derivatives. Ab08-K99E also showed improved neutralizing effects against the prototype, Omicron BA.1, and Omicron BA.4/5 pseudoviruses. In addition, compared to the original Ab08, Ab08-K99E exhibited high binding properties and affinities to the RBDs of the prototype, Delta, and Omicron BA.4/5 variants. Altogether, our findings report an optimized nAb, Ab08-K99E, against SARS-CoV-2 variants and demonstrate structure-based optimization as an effective way for antibody development against pathogens.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Mutação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Humanos , Anticorpos Antivirais/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , COVID-19/imunologia , COVID-19/virologia , Testes de Neutralização , Ligação Proteica , Células HEK293
12.
ACS Omega ; 9(8): 9202-9215, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434822

RESUMO

In this study, cationic polyacrylamide (CPAM)-coated magnetic nanoparticles (MNPs) Fe3O4@CPAM were synthesized for treating heavy O/W emulsions. This Fe3O4@CPAM was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and vibrating sample magnetometry (VSM) techniques, and its synergistic performances with microwaves were evaluated in detail with respect to the microwave radiation power, radiation time, and magnetic nanoparticle concentration. On this basis, the distribution of oil droplets and the wettability and chargeability of magnetic nanoparticles were measured without or with microwave radiation using biomicroscopy, contact angle measurement instrument, and a ζ-potential analyzer, thus revealing the synergistic demulsification mechanism between microwave and magnetic nanoparticles. The results showed that excessively high or low microwave radiation parameters had an inhibitory effect on the magnetic nanoparticle demulsification, and microwave promoted the magnetic nanoparticle demulsification only when the radiation parameters were in the optimal range. In addition, the water separation rate showed an increasing and then decreasing trend with the increase of magnetic nanoparticles concentration, with or without microwave action. As an example, the water separation rate of the emulsion for 1 h was 21.34% when the Fe3O4 concentration was 175 mg/L without microwave action, while it increased to 55.56% with microwave action. In contrast, when the concentration of Fe3O4@CPAM was 175 mg/L, the water separation rate was 42.86% without microwave radiation, while it was further increased to 77.38% under microwave radiation. These results indicate that magnetic nanoparticles and their complexes significantly affect the water separation process under different conditions. There is a more obvious coupling synergistic effect between Fe3O4@CPAM and microwave. This was due to the lower absolute potential of Fe3O4@CPAM and its higher hydrophobicity.

13.
Int J Biol Macromol ; 262(Pt 2): 130095, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346621

RESUMO

In this study, Cordyceps militaris matrix was employed for the first time to fabricate a biodegradable food packaging. Carmine and Ag@CuBTC were introduced to cross-link with mycelium and were uniformly dispersed within the matrix to enhance the water resistance, antimicrobial, and antioxidant properties of the bio-films. The bio-film displayed high biodegradability, with nearly 100 % degradation achieved after three weeks. The bio-film exhibited exceptional resistance to oxidation (49.30 % DPPH and 93.94 % ABTS•+), as well as effective inhibitory capabilities against E. coli and S. aureus, respectively. The composite film maintained a high CO2/O2 selective permeability, which was advantageous for mitigating fruit metabolism and extending shelf life. Simultaneously, food preservation experiments confirmed that these bio-films can decelerate the spoilage of fruits and effectively prolong the shelf-life of food. The experimental findings indicated that the prepared Bio-R-Ag@Cu film held promise as an environmentally friendly biodegradable material for food packaging.


Assuntos
Cordyceps , Estruturas Metalorgânicas , Frutas , Escherichia coli , Staphylococcus aureus , Embalagem de Alimentos , Antibacterianos
14.
Environ Res ; 251(Pt 1): 118580, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38423496

RESUMO

BACKGROUND AND AIMS: Exposure to brominated flame retardants (BFRs) has been widely confirmed to impair the normal functioning of the human body system. However, there is a paucity of study on the effects of serum BFRs on bone mineral density (BMD). This study aims to investigate the relationship between exposure to BFRs and BMD in a nationally representative sample of U.S. adults. METHODS: 3079 participants aged between 20 and 80 years with complete data were included in the study. Serum levels of BFRs were measured using automated liquid-liquid extraction and subsequent sample clean-up. The BMD of all participants were assessed by DXA examinations. Generalize linear model, Restricted cubic spline (RCS), subgroup, weighted quantile sum (WQS) and bayesian kernel machine regression (BKMR) were used to estimate the association between serum BFRs and BMD. RESULTS: Multivariate linear regression analyses revealed that, after adjusting for covariates, PBB153 was significantly associated with TF-BMD (ß = 0.0177, 95%CI: 0.0103-0.0252), FN-BMD (ß = 0.009, 95%CI: 0.0036-0.0145), TS-BMD (ß = 0.0081, 95%CI: 0.0013-0.015) and L1-BMD (ß = 0.0144, 95%CI: 0.0075-0.0213). However, the associations lose their statistical significance after further adjustment for sex. BFRs exhibited S-shaped or line-plateau dose-response curves with BMD. In subgroup analyses, BFRs were significantly associated with BMD in participants who were younger than 55 years, female, overweight (BMI >25 kg/m2), and less alcohol consumption. In WQS and BKMR analyses, the effects of BFRs mixtures on BMD differed by sex, and PBDE153, PBDE209 and PBB153 had the highest weights in the WQS regression model. CONCLUSION: This study showed that serum BFRs negatively predicted BMD in men, but not in women or the general population. PBDE153, PBDE209, and PBB153 were significant BMD factors, especially in younger, overweight, and less alcohol consumption individuals.


Assuntos
Densidade Óssea , Retardadores de Chama , Inquéritos Nutricionais , Humanos , Pessoa de Meia-Idade , Adulto , Retardadores de Chama/análise , Feminino , Masculino , Densidade Óssea/efeitos dos fármacos , Estudos Transversais , Idoso , Estados Unidos , Adulto Jovem , Idoso de 80 Anos ou mais , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/sangue
15.
J Colloid Interface Sci ; 663: 143-156, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38401436

RESUMO

In current clinical practice, the presence of biofilms poses a significant challenge in the effective elimination of bacterial infections because of the physical and chemical barriers formed by biofilms, which offer persistent protection to bacteria. Here, we developed hollow mesoporous polydopamine (hMP) nanoparticles (NPs) loaded with luteolin (Lu) as a quorum sensing inhibitor, which were further coated with hyaluronic acid (HA) shells to create hMP-Lu@HA NPs. We observed that upon reaching the infection site, the HA shells underwent initial degradation by the hyaluronidase enzyme present in the bacterial infection's microenvironment to expose the hMP-Lu NPs. Subsequently, Lu was released in response to the acidic conditions characteristic of bacterial infections, which effectively hindered and dispersed the biofilm. Moreover, when subjected to near-infrared irradiation, the robust photothermal conversion effect of hMP NPs accelerated the release of Lu and disrupted the integrity of the biofilms by localized heating. This dual action enhanced the eradication of the biofilm infection. Importantly, hMP-Lu@HA NPs also promoted tissue regeneration and healing at the implantation site, concurrently addressing biofilm infection. Taken together, this nanosystem, combined with mild-temperature photothermal therapy and quorum sensing inhibition strategy, holds significant potential for applications in the treatment of implantation-associated infections.


Assuntos
Infecções Bacterianas , Nanopartículas , Humanos , Percepção de Quorum , Terapia Fototérmica , Temperatura , Biofilmes , Nanopartículas/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
16.
J Am Chem Soc ; 146(3): 1926-1934, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38193748

RESUMO

Dielectric capacitors are highly desired in modern electronic devices and power systems to store and recycle electric energy. However, achieving simultaneous high energy density and efficiency remains a challenge. Here, guided by theoretical and phase-field simulations, we are able to achieve a superior comprehensive property of ultrahigh efficiency of 90-94% and high energy density of 85-90 J cm-3 remarkably in strontium titanate (SrTiO3), a linear dielectric of a simple chemical composition, by manipulating local symmetry breaking through introducing Ti/O defects. Atomic-scale characterizations confirm that these Ti/O defects lead to local symmetry breaking and local lattice strains, thus leading to the formation of the isolated ultrafine polar nanoclusters with varying sizes from 2 to 8 nm. These nanoclusters account for both considerable dielectric polarization and negligible polarization hysteresis. The present study opens a new realm of designing high-performance dielectric capacitors utilizing a large family of readily available linear dielectrics with very simple chemistry.

17.
Plant J ; 118(2): 373-387, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38159103

RESUMO

Petals in rapeseed (Brassica napus) serve multiple functions, including protection of reproductive organs, nutrient acquisition, and attraction of pollinators. However, they also cluster densely at the top, forming a thick layer that absorbs and reflects a considerable amount of photosynthetically active radiation. Breeding genotypes with large, small, or even petal-less varieties, requires knowledge of primary genes for allelic selection and manipulation. However, our current understanding of petal-size regulation is limited, and the lack of markers and pre-breeding materials hinders targeted petal-size breeding. Here, we conducted a genome-wide association study on petal size using 295 diverse accessions. We identified 20 significant single nucleotide polymorphisms and 236 genes associated with petal-size variation. Through a cross-analysis of genomic and transcriptomic data, we focused on 14 specific genes, from which molecular markers for diverging petal-size features can be developed. Leveraging CRISPR-Cas9 technology, we successfully generated a quadruple mutant of Far-Red Elongated Hypocotyl 3 (q-bnfhy3), which exhibited smaller petals compared to the wild type. Our study provides insights into the genetic basis of petal-size regulation in rapeseed and offers abundant potential molecular markers for breeding. The q-bnfhy3 mutant unveiled a novel role of FHY3 orthologues in regulating petal size in addition to previously reported functions.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Estudo de Associação Genômica Ampla , Sistemas CRISPR-Cas , Melhoramento Vegetal , Brassica rapa/genética , Mutagênese
18.
Carbohydr Polym ; 326: 121594, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142069

RESUMO

To develop composite hydrogels based on low acyl gellan gum (GG), the effect of puerarin (PUE) on the gel properties of GG was investigated. The results showed that the maximum storage modulus (G') of the 1.2 % GG/0.8 % PUE composite hydrogel was 377.4 Pa at 0.1 Hz, which was enhanced by 4.7-fold compared with that of 1.2 % GG. The melting temperature of this composite hydrogel increased from 74.1 °C to >80.0 °C. LF-NMR results showed that a significant amount of free water was present in the hydrogel matrix. The surface structure aggregation and the shrinkage of the honeycomb meshes in the composite hydrogel proved the cross-linking of PUE and GG. XRD, FTIR and molecular simulation results illustrated that hydrogen bonds were the most important factor controlling the interaction between GG and PUE. Thus, the GG/PUE composite hydrogel has good elasticity, thermal stability and water retention, which lays a good foundation for further application in the food industry.


Assuntos
Hidrogéis , Polissacarídeos Bacterianos , Hidrogéis/química , Polissacarídeos Bacterianos/química , Água/química
19.
Biosens Bioelectron ; 247: 115925, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134625

RESUMO

The detection of low-abundance mutation genes of the epidermal growth factor receptor (EGFR) exon 21 (EGFR L858R) plays a crucial role in the diagnosis of non-small cell lung cancer (NSCLC), as it enables early cancer detection and facilitates the development of treatment strategies. A detection platform was developed by combining the MscI restriction enzyme with the recombinase-aided isothermal amplification (RAA) technique (MRE-RAA). During the RAA process, "TGG^CCA" site of the wild-type genes was cleaved by the MscI restriction enzyme, while only the low-abundance mutation genes underwent amplification. Notably, when the RAA product was combined with CRISPR-Cas system, the sensitivity of detecting the EGFR L858R mutation increased by up to 1000-fold for addition of the MscI restriction enzyme. This achievement marked the first instance of attaining an analytical sensitivity of 0.001%. Furthermore, a disk-shaped microfluidic chip was developed to automate pretreatment while concurrently analyzing four blood samples. The microfluidic features of the chip include DNA extraction, MRE-RAA, and CRISPR-based detection. The fluorescence signal is employed for detection in the microfluidic chip, which is visible to the naked eye upon exposure to blue light irradiation. Furthermore, this platform has the capability to facilitate early diagnosis for various types of cancer by enabling high-sensitivity detection of low-abundance mutation genes.


Assuntos
Técnicas Biossensoriais , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Sensibilidade e Especificidade , Microfluídica , Técnicas de Amplificação de Ácido Nucleico , Recombinases/genética , Recombinases/metabolismo , Receptores ErbB/genética , Mutação , Hidrolases/genética
20.
Semin Cell Dev Biol ; 156: 93-106, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-37648621

RESUMO

The plasma membrane is crucial to the survival of animal cells, and damage to it can be lethal, often resulting in necrosis. However, cells possess multiple mechanisms for repairing the membrane, which allows them to maintain their integrity to some extent, and sometimes even survive. Interestingly, cells that survive a near-necrosis experience can recognize sub-lethal membrane damage and use it as a signal to secrete chemokines and cytokines, which activate the immune response. This review will present evidence of necrotic cell survival in both in vitro and in vivo systems, including in C. elegans, mouse models, and humans. We will also summarize the various membrane repair mechanisms cells use to maintain membrane integrity. Finally, we will propose a mathematical model to illustrate how near-death experiences can transform dying cells into innate immune modulators for their microenvironment. By utilizing their membrane repair activity, the biological effects of cell death can extend beyond the mere elimination of the cells.


Assuntos
Caenorhabditis elegans , Imunidade Inata , Humanos , Animais , Camundongos , Necrose/metabolismo , Morte Celular , Membrana Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...