Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 244: 114885, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36334451

RESUMO

Bacterial resistance is a growing threat to public health and a significant barrier to anti-infective treatment. Consequently, the development of novel antibacterial strategies to address this issue is critical. Herein, we developed a series of chalcone-alkyl-lysine compounds by mimicking the chemical structure and antibacterial properties of cationic antimicrobial peptides. Most of the compounds showed significant antibacterial activity against Gram-positive and Gram-negative bacteria. Compound 6d displayed potent antibacterial activity against Gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), with MICs of 1-4 µg/mL. In addition, 6d exhibited excellent antibacterial activity against clinical MRSA and NDM-positive isolates, bactericidal properties, low resistance frequency. The mechanism studies revealed that compound 6d destroys bacterial cell membranes by interacting with phosphatidylglycerol (PG), causing the production of reactive oxygen species (ROS) and the leakage of nucleic acids, resulting in bacterial death. Furthermore, compound 6d did not exhibit any observable toxicity in HeLa and HEK293 cells at 8 × MIC. As a result, the findings suggest that compound 6d has potential therapeutic effects against bacterial infections and could be a promising drug candidate for future research.


Assuntos
Chalcona , Chalconas , Humanos , Antibacterianos/química , Bactérias Gram-Positivas , Bactérias Gram-Negativas , Lisina/farmacologia , Chalconas/farmacologia , Chalcona/farmacologia , Células HEK293 , Testes de Sensibilidade Microbiana , Escherichia coli , Peptídeos Catiônicos Antimicrobianos/farmacologia
2.
Bioorg Med Chem Lett ; 28(2): 214-221, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29248295

RESUMO

The emergence of antibiotic drug (like carbapenem) resistance is being a global crisis. Among those resistance factors of the ß-lactam antibiotics, the metallo-ß-lactamases (MBLs) is one of the most important reasons. In this paper, a series of cyclic dithiocarbamate compounds were synthesized and their inhibition activities against MBLs were initially tested combined with meropenem (MEM) by in vitro antibacterial efficacy tests. Sodium 1,4,7-triazonane-1,4,7-tris(carboxylodithioate) (compound 5) was identified as the most active molecule to restore the activity of MEM. Further anti-bacterial effectiveness assessment, compound 5 restored the activity of MEM against Escherichia coli, Citrobacter freundii, Proteus mirabilis and Klebsiella pneumonia, which carried resistance genes of blaNDM-1. The compound 5 was non-hemolytic, even at a concentration of 1000 µg/mL. This compound was low toxic toward mammalian cells, which was confirmed by fluorescence microscopy image and the inhibition rate of HeLa cells. The Ki value of compounds 5 against NDM-1 MBL was 5.63 ±â€¯1.27 µM. Zinc ion sensitivity experiments showed that the inhibitory effect of compound 5 as a MBLs inhibitor was influenced by zinc ion. The results of the bactericidal kinetics displayed that compound 5 as an adjuvant assisted MEM to kill all bacteria. These data validated that this NOTA dithiocarbamate analogue is a good inhibitor of MBLs.


Assuntos
Antibacterianos/farmacologia , Compostos Heterocíclicos/farmacologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , Antibacterianos/síntese química , Antibacterianos/química , Sobrevivência Celular/efeitos dos fármacos , Citrobacter freundii/efeitos dos fármacos , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Células HeLa , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Compostos Heterocíclicos com 1 Anel , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Proteus mirabilis/efeitos dos fármacos , Relação Estrutura-Atividade , Inibidores de beta-Lactamases/síntese química , Inibidores de beta-Lactamases/química
3.
Carbohydr Res ; 434: 33-36, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27563841

RESUMO

A new azasugar (3S,4S)-3-((R)-1,2-dihydroxyethyl)pyrrolidine-3,4-diol (1) was obtained from commercially available d-glucose using one-pot reductive cyclization as a key step. The target product, i.e., the iminosugar isomer, was obtained in 10 steps and 24.3% overall yield. Only three column chromatography purifications were needed in this synthesis. The biological activity of the target molecule as glycosidase inhibitor was studied, but the inhibitory activity against four glycosidases was not good (IC50 > 100 µM).


Assuntos
Glicosídeo Hidrolases/antagonistas & inibidores , Imino Açúcares/síntese química , Pirrolidinas/síntese química , Ciclização , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Imino Açúcares/química , Imino Açúcares/farmacologia , Estrutura Molecular , Pirrolidinas/química , Pirrolidinas/farmacologia , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...