Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bone Oncol ; 46: 100601, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38706714

RESUMO

Reversine, or 2-(4-morpholinoanilino)-6-cyclohexylaminopurine, is a 2,6-disubstituted purine derivative. This small molecule shows anti-tumor potential by playing a central role in the inhibition of several kinases related to cell cycle regulation and cytokinesis. In this study, systematic review demonstrated the feasibility and pharmacological mechanism of anti-tumor effect of reversine. Firstly, we grafted MNNG/HOS, U-2 OS, MG-63 osteosarcoma cell aggregates onto chicken embryonic chorioallantoic membrane (CAM) to examine the tumor volume of these grafts after reversine treatment. Following culture, reversine inhibited the growth of osteosarcoma cell aggregates on CAM significantly. In vitro experiment, reversine suppressed osteosarcoma cell viability, colony formation, proliferation, and induced apoptosis and cell cycle arrest at G0-G1 phase. Scratch wound assay demonstrated that reversine restrained cell migration. Reversine increased the protein expression of E-cadherin. The mRNA expression of Rac1, RhoA, CDC42, PTK2, PXN, N-cadherin, Vimentin in MNNG/HOS, U-2 OS and MG-63 cells were suppressed and PTEN increased after reversine treatment. Network pharmacology prediction, molecular docking and systematic review revealed MEK1 can be used as an effective target for reversine to inhibit osteosarcoma. Western blot results show the regulation of MEK1 and ERK1/2 by reversine was not consistent in different osteosarcoma cell lines, but we found that reversine significantly inhibited the protein expression of MEK1 in MNNG/HOS, U-2 OS and MG-63. All these suggested that reversine can exert its anti-tumor effect by targeting the expression of MEK1.

2.
Opt Express ; 32(6): 10461-10478, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571257

RESUMO

We propose a multimode interference-based optical fiber NHTSN sensor with a helical taper for simultaneous measurement of micro torsion and temperature. The sensor consists of single mode fiber (SMF), no-core fiber (NCF), and seven-core fiber (SCF). A helical taper is fabricated in the SCF using a flame heater, forming the SMF-NCF-Helical Taper SCF-NCF-SMF (NHTSN) structure. Theoretical analysis and experimental results demonstrate that the introduction of helical taper not only imparts directionality to the torsion measurement, but also results in a significant improvement in torsion sensitivity due to the increased inter-mode optical path difference (OPD) and enhanced inter-mode coupling. In the experiment, the torsion sensitivity of the NHTSN sensor reaches -1.255 nm/(rad/m) in the twist rate (TR) range of -3.931 rad/m to 3.931 rad/m, which is a 9-fold improvement over the original structure. Further reduction of the helical taper diameter increases the sensitivity to -1.690 nm/(rad/m). In addition, the sensor has a temperature sensitivity of up to 97 pm/°C from 20 °C to 90 °C, and simultaneous measurement of torsion and temperature is attainable through a dual-parameter measurement matrix. The NHTSN sensor possesses advantages of compact size, high sensitivity, good linearity, and strain-independence, endowing it with potential applications in structural health monitoring (SHM) and engineering machinery.

3.
J Agric Food Chem ; 72(12): 6096-6109, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38484112

RESUMO

Bacillus amyloliquefaciens is a well-accepted probiotic, with many benefits for both humans and animals. The ability of intestinal stem cells (ISCs) to develop into several intestinal epithelial cell types helps accelerate intestinal epithelial regeneration. Limited knowledge exists on how bacteria regulated ISCs proliferation and regeneration. Our study investigated the effects of Bacillus amyloliquefaciens supplementation on ISC proliferation and regeneration and intestinal mucosal barrier functions in piglets exposed to lipopolysaccharide (LPS). Eighteen piglets (male, 21 days old) were randomly split into 3 clusters: CON cluster, LPS cluster, and SC06+LPS cluster. On day 21, 100 µg/kg body weight of LPS was intraperitoneally administered to the SC06+LPS and LPS groups. We found SC06 supplementation maintained the intestinal barrier integrity, enhanced intestinal antioxidant capacity, reduced generation of inflammatory response, and suppressed enterocyte apoptosis against the deleterious effects triggered by LPS. In addition, our research indicated that the SC06 supplementation not only improved the ISC regeneration, but also resulted in upregulation of aryl hydrocarbon receptor (AhR) in LPS-challenge piglets. Further studies showed that SC06 also induced ISC differentiation toward goblet cells and inhibited their differentiation to intestinal absorptive cells and enterocytes. The coculture system of SC06 and ileum organoids revealed that SC06 increased the growth of ISCs and repaired LPS-induced organoid damage through activating the AhR/STAT3 signaling pathway. These findings showed that SC06, possibly through the AhR/STAT3 pathway, accelerated ISC proliferation and promoted epithelial barrier healing, providing a potential clinical treatment for IBD. Our research demonstrated that SC06 is effective in preventing intestinal epithelial damage after pathological injury, restoring intestinal homeostasis, and maintaining intestinal epithelial regeneration.


Assuntos
Bacillus amyloliquefaciens , Lipopolissacarídeos , Humanos , Masculino , Animais , Suínos , Lipopolissacarídeos/farmacologia , Mucosa Intestinal/metabolismo , Bacillus amyloliquefaciens/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Células-Tronco/metabolismo , Proliferação de Células , Inflamação/metabolismo , Fator de Transcrição STAT3/metabolismo
4.
Obes Rev ; 25(6): e13724, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38408757

RESUMO

Chronic inflammation of adipose tissue is a prominent characteristic of many metabolic diseases. Lipid metabolism in adipose tissue is consistently dysregulated during inflammation, which is characterized by substantial infiltration by proinflammatory cells and high cytokine concentrations. Adipose tissue inflammation is caused by a variety of endogenous factors, such as mitochondrial dysfunction, reactive oxygen species (ROS) production, endoplasmic reticulum (ER) stress, cellular senescence, ceramides biosynthesis and mediators of lipopolysaccharides (LPS) signaling. Additionally, the gut microbiota also plays a crucial role in regulating adipose tissue inflammation. Essentially, adipose tissue inflammation arises from an imbalance in adipocyte metabolism and the regulation of immune cells. Specific inflammatory signals, including nuclear factor-κB (NF-κB) signaling, inflammasome signaling and inflammation-mediated autophagy, have been shown to be involved in the metabolic regulation. The pathogenesis of metabolic diseases characterized by chronic inflammation (obesity, insulin resistance, atherosclerosis and nonalcoholic fatty liver disease [NAFLD]) and recent research regarding potential therapeutic targets for these conditions are also discussed in this review.


Assuntos
Tecido Adiposo , Inflamação , Humanos , Tecido Adiposo/metabolismo , Inflamação/metabolismo , Animais , Transdução de Sinais , Obesidade/metabolismo , Metabolismo dos Lipídeos/fisiologia , Resistência à Insulina
5.
Appl Microbiol Biotechnol ; 108(1): 165, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252275

RESUMO

Ferulic acid (FA) and p-coumaric acid (p-CA) are hydroxycinnamic acid inhibitors that are mainly produced during the pretreatment of lignocellulose. To date, the inhibitory mechanism of hydroxycinnamic acid compounds on Saccharomyces cerevisiae has not been fully elucidated. In this study, liquid chromatography-mass spectrometry (LC-MS) and scanning electron microscopy (SEM) were used to investigate the changes in S. cerevisiae cells treated with FA and p-CA. In this experiment, the control group was denoted as group CK, the FA-treated group was denoted as group F, and the p-CA-treated group was denoted as group P. One hundred different metabolites in group F and group CK and 92 different metabolites in group P and group CK were selected and introduced to metaboanalyst, respectively. A total of 38 metabolic pathways were enriched in S. cerevisiae under FA stress, and 27 metabolic pathways were enriched in S. cerevisiae under p-CA stress as identified through Kyoto Encyclopaedia of Genes and Genomes (KEGG) analysis. The differential metabolites involved included S-adenosine methionine, L-arginine, and cysteine, which were significantly downregulated, and acetyl-CoA, L-glutamic acid, and L-threonine, which were significantly upregulated. Analysis of differential metabolic pathways showed that the differentially expressed metabolites were mainly related to amino acid metabolism, nucleotide metabolism, fatty acid degradation, and the tricarboxylic acid cycle (TCA). Under the stress of FA and p-CA, the metabolism of some amino acids was blocked, which disturbed the redox balance in the cells and destroyed the synthesis of most proteins, which was the main reason for the inhibition of yeast cell growth. This study provided a strong scientific reference to improve the durability of S. cerevisiae against hydroxycinnamic acid inhibitors. KEY POINTS: • Morphological changes of S. cerevisiae cells under inhibitors stress were observed. • Changes of the metabolites in S. cerevisiae cells were explored by metabolomics. • One of the inhibitory effects on yeast is due to changes in the metabolic network.


Assuntos
Ácidos Cumáricos , Saccharomyces cerevisiae , Ácidos Cumáricos/farmacologia , Metabolômica , Aminoácidos
6.
Anim Microbiome ; 5(1): 49, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817260

RESUMO

BACKGROUND: Pet cats frequently have diarrhea in their daily life. Bacillus has a protective role that has crucial beneficial functions on intestinal homeostasis. The aim of this research was to investigate the effects of the compound Bacillus on the prevention of diarrhea, microbiota and metabolism in pet cats. A total of 20 pet cats (1-2 years old, 3.91 ± 0.92 kg) were randomly divided into two groups and fed with a basal diet (Control group), or a basal diet supplemented with 3 × 109 CFU/kg compound Bacillus (Probiotics group). The experiment lasted 33 days. RESULTS: Results showed that the compound Bacillus significantly reduced the rate of soft stools and diarrhea in pet cats compared with the control group (P < 0.05, n = 10). Meanwhile, compared with the control group, the probiotics group significantly decreased the content of IL-1ß and IL-6 and significantly increased IL-10 (P < 0.05, n = 6) in the serum. In addition, feeding probiotics significantly increased the abundance of p_Patescibacter and g_Plectosphaerella, decreased the abundance of p_Firmicutes, p_Gemmatimonadetes, g_Ruminococcaceae_UCG-005, g_Ascochytahe and g_Saccharomyces in the feces of the pet cats (P < 0.05, n = 6). And it also can significantly increase the content of total SCFAs, acetic acid and butyric acid in the feces (P < 0.05, n = 6). The fecal and serum metabolomics analyses revealed that most fecal and serum compounds were involved in metabolism, particularly in chemical structure transformation maps and amino acid metabolism. Also, eugenitol and methyl sulfate were the most significantly increased serum metabolites, and log2FC were 38.73 and 37.12, respectively. Pearson's correlation analysis showed that changes in serum metabolism and fecal microbiota were closely related to immune factors. There was also a strong correlation between serum metabolites and microbiota composition. CONCLUSIONS: The results of this research highlight the potential of the compound Bacillus as a dietary supplement to alleviate diarrhea in pet cats.

7.
Cells ; 12(10)2023 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-37408272

RESUMO

Large-scale use of antimicrobials in agriculture and medicine contributes to antibiotic residues in raw foods, the spread of antimicrobial resistance (AMR) and drug pollution, which seriously threatens human health and imposes significant economic burdens on society, suggesting the need for novel therapeutic options that prevent or control zoonoses. In this study, four probiotics were selected to assess their capability to alleviate pathogen-induced damage. Results showed that a simulated gastrointestinal juice and bile tolerated L. plantarum Lac16 with high lactic acid secretion can significantly inhibit the growth of multiple zoonotic pathogens. Lac16 also significantly inhibited the biofilm formation and mRNA expression of virulence traits (genes related to virulence, toxins, flagella biogenesis and motility, antibiotic resistance, biofilm formation and AI-2 quorum sensing) of enterohemorrhagic E. coli O157:H7 (EHEC). Furthermore, Lac16 and Lac26 significantly protected C. elegans against zoonotic pathogen-induced (EHEC, S. typhimurium, C. perfringens) deaths. Moreover, Lac16 significantly promoted epithelial repair and ameliorated lipopolysaccharide (LPS)-induced intestinal epithelial apoptosis and barrier dysfunction by activating the Wnt/ß-catenin signaling pathway, and markedly reduced LPS-induced inflammatory responses by inhibiting the TLR4/MyD88 signaling pathway. The present results indicate that Lac16 attenuates enterohemorrhagic E. coli infection-induced damage by inhibiting key virulence traits of E. coli, promoting epithelial repair and improving intestinal epithelial barrier function, which may be mediated by the activated Wnt/ß-catenin signaling pathway and the inhibited TLR4/MyD88 signaling pathway of the intestinal epithelium.


Assuntos
Escherichia coli O157 , Lipopolissacarídeos , Animais , Humanos , Virulência/genética , Caenorhabditis elegans , Receptor 4 Toll-Like , Fator 88 de Diferenciação Mieloide , Escherichia coli O157/genética
8.
BMC Med ; 21(1): 90, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894970

RESUMO

BACKGROUND: Pre-eclampsia (PE) is one of the leading causes of maternal and fetal morbidity/mortality during pregnancy, and alpha-2-macroglobulin (A2M) is associated with inflammatory signaling; however, the pathophysiological mechanism by which A2M is involved in PE development is not yet understood. METHODS: Human placenta samples, serum, and corresponding clinical data of the participants were collected to study the pathophysiologic mechanism underlying PE. Pregnant Sprague-Dawley rats were intravenously injected with an adenovirus vector carrying A2M via the tail vein on gestational day (GD) 8.5. Human umbilical artery smooth muscle cells (HUASMCs), human umbilical vein endothelial cells (HUVECs), and HTR-8/SVneo cells were transfected with A2M-expressing adenovirus vectors. RESULTS: In this study, we demonstrated that A2M levels were significantly increased in PE patient serum, uterine spiral arteries, and feto-placental vasculature. The A2M-overexpression rat model closely mimicked the characteristics of PE (i.e., hypertension in mid-to-late gestation, histological and ultrastructural signs of renal damage, proteinuria, and fetal growth restriction). Compared to the normal group, A2M overexpression significantly enhanced uterine artery vascular resistance and impaired uterine spiral artery remodeling in both pregnant women with early-onset PE and in pregnant rats. We found that A2M overexpression was positively associated with HUASMC proliferation and negatively correlated with cell apoptosis. In addition, the results demonstrated that transforming growth factor beta 1 (TGFß1) signaling regulated the effects of A2M on vascular muscle cell proliferation described above. Meanwhile, A2M overexpression regressed rat placental vascularization and reduced the expression of angiogenesis-related genes. In addition, A2M overexpression reduced HUVEC migration, filopodia number/length, and tube formation. Furthermore, HIF-1α expression was positively related to A2M, and the secretion of sFLT-1 and PIGF of placental origin was closely related to PE during pregnancy or A2M overexpression in rats. CONCLUSIONS: Our data showed that gestational A2M overexpression can be considered a contributing factor leading to PE, causing detective uterine spiral artery remodeling and aberrant placental vascularization.


Assuntos
Placenta , Pré-Eclâmpsia , Animais , Feminino , Humanos , Gravidez , Ratos , Células Endoteliais/metabolismo , Macroglobulinas/metabolismo , Placenta/metabolismo , Fator de Crescimento Placentário/metabolismo , Ratos Sprague-Dawley , Artéria Uterina/metabolismo
9.
Front Nutr ; 9: 999998, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386928

RESUMO

This experiment investigated the effects of Bacillus amyloliquefaciens SC06 (BaSC06) and its combination with antimicrobial peptide (AMP) on the laying performance, egg quality, intestinal physical barrier, antioxidative status and immunity of commercial Jingbai strain laying hens. The results showed that BaSC06 significantly improved laying performance and egg quality of laying hens. However, there was a tendency to increase laying performance and decrease egg quality for the addition of AMP compared to the BaSC06 group. Also, both BaSC06 and its combination with AMP treatment increased length of microvilli and the content of tight junction protein in jejunum, and BaSC06 combination with AMP treatment is better than BaSC06 treatment alone. Compared to control, most of the serum antioxidant enzyme activities were significantly increased in the BaSC06+AMP group, the BaSC06 group only increased the activity of GSH-Px. Short-chain fatty acid analysis showed that BSC06 significantly increased the content of butyric, isobutyric and isovaleric acid in the cecum. However, the content of most of the short-chain fatty acids was even lower than that of the control group after the addition of AMP. Microbiota analysis showed that BaSC06 increased the absolute abundance of the butyrate-producing gut bacteria Ruminococaaoeae UCG-005, while the addition of AMP reduced the number of microorganisms detected and weakened the effect of BaSC06. BaSC06 acts as an anti-inflammatory agent by regulating the gut microbiota, and AMP further attenuates the immune response by reducing the number of gut microbes based on improved intestinal microbiota composition.

10.
J Anim Sci Biotechnol ; 13(1): 118, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36224643

RESUMO

BACKGROUND: This study aimed to investigate whether the combination of Macleaya cordata extract (MCE) and Bacillus could improve the laying performance and health of laying hens better. METHODS: A total of 360 29-week-old Jingbai laying hens were randomly divided into 4 treatments: control group (basal diet), MCE group (basal diet + MCE), Probiotics Bacillus Compound (PBC) group (basal diet + compound Bacillus), MCE + PBC group (basal diet + MCE + compound Bacillus). The feeding experiment lasted for 42 d. RESULTS: The results showed that the laying rate and the average daily egg mass in the MCE + PBC group were significantly higher than those in the control group (P < 0.05) and better than the MCE and PBC group. Combination of MCE and Bacillus significantly increased the content of follicle-stimulating hormone (FSH) in the serum and up-regulated the expression of related hormone receptor gene (estrogen receptor-ß, FSHR and luteinizing hormone/choriogonadotropin receptor) in the ovary of laying hens (P < 0.05). In the MCE + PBC group, the mRNA expressions of zonula occluden-1, Occludin and mucin-2 in jejunum was increased and the intestinal epithelial barrier detected by transmission electron microscopy was enhanced compared with the control group (P < 0.05). In addition, compared with the control group, combination of MCE and Bacillus significantly increased the total antioxidant capacity and catalase activity (P < 0.05), and down-regulated the mRNA expressions of inflammation-related genes (interleukin-1ß and tumor necrosis factor-α) as well as apoptosis-related genes (Caspase 3, Caspase 8 and P53) (P < 0.05). The concentration of acetic acid and butyric acid in the cecum content of laying hens in the MCE + PBC group was significantly increased compared with the control group (P < 0.05). CONCLUSIONS: Collectively, dietary supplementation of 600 µg/kg MCE and 5 × 108 CFU/kg compound Bacillus can improve laying performance by improving microbiota to enhance antioxidant capacity and intestinal barrier, regulate reproductive hormones and the concentration of cecal short-chain fatty acids of laying hens, and the combined effect of MCE and Bacillus is better than that of single supplementation.

11.
Antioxidants (Basel) ; 11(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36139873

RESUMO

This study aims to explore the effects of modified montmorillonite (MMT, copper loading) on the growth performance, gut microbiota, intestinal barrier, antioxidative capacity and immune function of broilers. Yellow-feathered broilers were randomly divided into control (CTR), modified montmorillonite (MMT), and antibiotic (ANTI) groups. Results revealed that MMT supplementation increased the BW and ADG and decreased the F/R during the 63-day experiment period. 16S rRNA sequencing showed that MMT modulated the cecal microbiota composition of broilers by increasing the relative abundance of two phyla (Firmicutes and Bacteroidetes) and two genera (Bacteroides and Faecalibacterium) and decreasing the abundance of genus Olsenella. MMT also improved the intestinal epithelial barrier indicated by the up-regulated mRNA expression of claudin-1, occludin, and ZO-1 and the increased length of microvilli in jejunum and the decreased levels of DAO and D-LA in serum. In addition, MMT enhanced the immune function indicated by the increased levels of immunoglobulins, the decreased levels of MPO and NO, the down-regulated mRNA expression of IL-1ß, IL-6, and TNF-α, and the up-regulated mRNA expression of IL-4 and IL-10. Moreover, MMT down-regulated the expression of jejunal TLRs/MAPK/NF-κB signaling pathway-related genes (TLR2, TLR4, Myd88, TRAF6, NF-κB, and iNOS) and related proteins (TRAF6, p38, ERK, NF-κB, and iNOS). In addition, MMT increased the antioxidant enzyme activities and the expression of Nrf2/HO-1 signaling pathway-related genes and thereby decreased the apoptosis-related genes expression. Spearman's correlation analysis revealed that Bacteroides, Faecalibacterium, and Olsenella were related to the inflammatory index (MPO and NO), oxidative stress (T-AOC, T-SOD, and CAT) and intestinal integrity (D-LA and DAO). Taken together, MMT supplementation improved the growth performance of broilers by modulating intestinal microbiota, enhancing the intestinal barrier function, and improving inflammatory response, which might be mediated by inhibiting the TLRs/MAPK/NF-κB signaling pathway, and antioxidative capacity mediated by the Nrf2/HO-1 signaling pathway.

12.
Stem Cell Reports ; 17(3): 664-677, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35148842

RESUMO

The horizontal basal cells (HBCs) of olfactory epithelium (OE) serve as reservoirs for stem cells during OE regeneration, through proliferation and differentiation, which is important in recovery of olfactory function. However, the molecular mechanism of regulation of HBC proliferation and differentiation after injury remains unclear. Here, we found that yes-associated protein (YAP) was upregulated and activated in HBCs after OE injury. Deletion of YAP in HBCs led to impairment in OE regeneration and functional recovery of olfaction after injury. Mechanically, YAP was activated by S1P/S1PR2 signaling, thereby promoting the proliferation of HBCs and OE regeneration after injury. Finally, activation of YAP signaling enhanced the proliferation of HBCs and improved functional recovery of olfaction after OE injury or in Alzheimer's disease model mice. Taken together, these results reveal an S1P/S1PR2/YAP pathway in OE regeneration in response to injury, providing a promising therapeutic strategy for OE injury.


Assuntos
Mucosa Olfatória , Células-Tronco , Animais , Diferenciação Celular/fisiologia , Camundongos , Transdução de Sinais , Células-Tronco/metabolismo
13.
IEEE Trans Cybern ; 52(3): 1429-1442, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32413940

RESUMO

Driving pattern recognition based on features, such as GPS, gear, and speed information, is essential to develop intelligent transportation systems. However, it is usually expensive and labor intensive to collect a large amount of labeled driving data from real-world driving scenes. The lack of a labeled data problem in a driving scene substantially hinders the driving pattern recognition accuracy. To handle the scarcity of labeled data, we have developed a novel discriminative transfer learning method for driving pattern recognition to leverage knowledge from related scenes with labeled data to improve recognition performance in unlabeled scenes. Note that data from different scenes may have different distributions, which is a major bottleneck limiting the performance of transfer learning. To address this issue, the proposed method adopts a discriminative distribution matching scheme with the aid of pseudolabels in unlabeled scenes. It is able to reduce the intraclass distribution disagreement for the same driving pattern among labeled and unlabeled scenes while increasing the interclass distance among different patterns. Pseudolabels in unlabeled scenes are updated iteratively via an ensemble strategy that preserves the data structure while enhancing the model robustness. To evaluate the performance of the proposed method, we conducted comprehensive experiments on real-world parking lot datasets. The results show that the proposed method can substantially outperform state-of-the-art methods in driving pattern recognition.


Assuntos
Condução de Veículo , Aprendizado de Máquina , Reconhecimento Automatizado de Padrão , Algoritmos , Humanos
14.
Int J Biol Macromol ; 196: 172-179, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-34914912

RESUMO

Bacterial cellulose (BC) is an emerging biological material with unique properties and structure, which has attracted more and more attention. In this study, Gluconacetobacter xylinus was used to convert sweet potato residues (SPR) hydrolysate to BC. SPR was directly used without pretreatment, and almost no inhibitors were generated, which was beneficial to subsequent glucan conversion and SPR-BC synthesis. SPR-BC production was 11.35 g/L under the optimized condition. The comprehensive structural characterization and mechanical analysis demonstrated that the crystallinity, maximum thermal degradation temperature, and tensile strength of SPR-BC were 87.39%, 263 °C, and 6.87 MPa, respectively, which were superior to those of BC produced with the synthetic medium. SPR-BC was added to rice straw pulp to enhance the bonding force between fibers and the indices of tensile, burst, and tear of rice straw paper. The indices were increased by 83.18%, 301.27%, and 169.58%, respectively. This research not only expanded the carbon source of BC synthesis, reduced BC production cost, but also improved the quality of rice straw paper.


Assuntos
Bactérias/metabolismo , Celulose/biossíntese , Fermentação , Ipomoea batatas/química , Metabolismo dos Carboidratos , Hidrólise , Análise Espectral , Termogravimetria
15.
Front Nutr ; 8: 706148, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722602

RESUMO

Clostridium perfringens is an important zoonotic pathogen associated with food contamination and poisoning, gas gangrene, necrotizing enterocolitis or necrotic enteritis in humans and animals. Dysbacteriosis is supposedly associated with the development of C. perfringens infection induced necrotic enteritis, but the detailed relationship between intestinal health, microbiome, and C. perfringens infection-induced necrotic enteritis remains poorly understood. This research investigated the effect of probiotics on the growth performance and intestinal health of broilers, and the involved roles of intestinal microbiota and microbial metabolic functions under C. perfringens infection. Results showed that subclinical necrotic enteritis was successfully induced as evidenced by the significant lower body weight (BW), suppressed feed conversion ratio (FCR), decreased ileal villus height and mucosal barrier function, and increased ileal histopathological score and bursal weight index. Lactobacillus plantarum or Paenibacillus polymyxa significantly attenuated C. perfringens-induced compromise of growth performance (BW, FCR) and ileal mucosa damage as illustrated by the increased ileal villus height and villus/crypt ratio, the decreased ileal histopathological score and the enhanced ileal mucosal barrier function. L. plantarum also significantly alleviated C. perfringens-induced enlarged bursa of fabricius and the decreased levels of ileal total SCFAs, acetate, lactate, and butyrate. Furthermore, dietary L. plantarum improved C. perfringens infection-induced intestinal dysbiosis as evidenced by significantly enriched short-chain fatty acids-producing bacteria (Lachnospiraceae, Ruminococcaceae, Oscillospira, Faecalibacterium, Blautia), reduced drug-resistant bacteria (Bacteroides, Alistipes) and enteric pathogens (Escherichia coli, Bacteroides fragilis) and bacterial metabolic dysfunctions as illustrated by significantly increased bacterial fatty acid biosynthesis, decreased bacterial lipopolysaccharide biosynthesis, and antibiotic biosynthesis (streptomycin and vancomycin). Additionally, the BW and intestinal SCFAs were the principal factors affecting the bacterial communities and microbial metabolic functions. The above findings indicate that dietary with L. plantarum attenuates C. perfringens-induced compromise of growth performance and intestinal dysbiosis by increasing SCFAs and improving intestinal health in broilers.

16.
Antioxidants (Basel) ; 10(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34679680

RESUMO

Autophagy is a conserved proteolytic mechanism, which degrades and recycles damaged organs and proteins in cells to resist external stress. Probiotics could induce autophagy; however, its underlying molecular mechanisms remain elusive. Our previous study has found that BaSC06 could alleviate oxidative stress by inducing autophagy in rats. This research aimed to verify whether Bacillus amyloliquefaciens SC06 can induce autophagy to alleviate oxidative stress in IPEC-J2 cells, as well as explore its mechanisms. IPEC-J2 cells were first pretreated with 108 CFU/mL BaSC06, and then were induced to oxidative stress by the optimal dose of diquat. The results showed that BaSC06 significantly triggered autophagy, indicated by the up-regulation of LC3 and Beclin1 along with downregulation of p62 in IPEC-J2 cells. Further analysis revealed that BaSC06 inhibited the AKT-FOXO signaling pathway by inhibiting the expression of p-AKT and p-FOXO and inducing the expression of SIRT1, resulting in increasing the transcriptional activity of FOXO3 and gene expression of the ATG5-ATG12 complex to induce autophagy, which alleviated oxidative stress and apoptosis. Taken together, BaSC06 can induce AKT-FOXO-mediated autophagy to alleviate oxidative stress-induced apoptosis and cell damage, thus providing novel theoretical support for probiotics in the prevention and treatment of oxidative damage.

17.
Toxicology ; 461: 152917, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34464682

RESUMO

Despite the common application in pregnancy at clinical practice, it remains ambiguous whether dexamethasone (Dex) exposure can affect embryonic myogenesis. In this study, firstly we showed that 10-6 M Dex (Cheng et al., 2016; 2017) treatment resulted in abnormal myogenesis in chicken embryos. Secondly, we demonstrated that 10-6 M Dex-induced abnormality of myogenesis resulted from aberrant cell proliferation, as well as from alteration of the differentiation process from the early stage of somitogenesis up to the late stage of myogenesis. The above-mentioned results caused by Dex exposure might be due to the aberrant gene expressions of somite formation (Raldh2, Fgf8, Wnt3a, ß-catenin, Slug, Paraxis, N-cadherin) and differentiation (Pax3, MyoD, Wnt3a, Msx1, Shh). Thirdly, RNA sequencing implied the statistically significant differential gene expressions in regulating the myofibril and systemic development, as well as a dramatical alteration of retinoic acid (RA) signaling during somite development in the chicken embryos exposed to Dex. The subsequent validation experiments verified that Dex treatment indeed led to a metabolic change of RA signaling, which was up-regulated and principally mediated by FGF-ERK signaling revealed by means of the combination of chicken embryos and in vitro C2C12 cells. These findings highlight that 10-6 M Dex exposure enhances the risk of abnormal myogenesis through interfering with RA signaling during development.


Assuntos
Dexametasona/toxicidade , Desenvolvimento Embrionário/efeitos dos fármacos , Glucocorticoides/toxicidade , Desenvolvimento Muscular/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Embrião de Galinha , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Gravidez , Transdução de Sinais/efeitos dos fármacos , Tretinoína/metabolismo , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...