Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Nat Chem Biol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030363

RESUMO

Lysine L-lactylation (Kl-la) is a novel protein posttranslational modification (PTM) driven by L-lactate. This PTM has three isomers: Kl-la, N-ε-(carboxyethyl)-lysine (Kce) and D-lactyl-lysine (Kd-la), which are often confused in the context of the Warburg effect and nuclear presence. Here we introduce two methods to differentiate these isomers: a chemical derivatization and high-performance liquid chromatography analysis for efficient separation, and isomer-specific antibodies for high-selectivity identification. We demonstrated that Kl-la is the primary lactylation isomer on histones and dynamically regulated by glycolysis, not Kd-la or Kce, which are observed when the glyoxalase system was incomplete. The study also reveals that lactyl-coenzyme A, a precursor in L-lactylation, correlates positively with Kl-la levels. This work not only provides a methodology for distinguishing other PTM isomers, but also highlights Kl-la as the primary responder to glycolysis and the Warburg effect.

2.
Front Endocrinol (Lausanne) ; 15: 1401648, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38899007

RESUMO

Background: Metabolic abnormalities are closely tied to the development of ovarian cancer (OC), yet the relationship between anthropometric indicators as risk indicators for metabolic abnormalities and OC lacks consistency. Method: The Mendelian randomization (MR) approach is a widely used methodology for determining causal relationships. Our study employed summary statistics from the genome-wide association studies (GWAS), and we used inverse variance weighting (IVW) together with MR-Egger and weighted median (WM) supplementary analyses to assess causal relationships between exposure and outcome. Furthermore, additional sensitivity studies, such as leave-one-out analyses and MR-PRESSO were used to assess the stability of the associations. Result: The IVW findings demonstrated a causal associations between 10 metabolic factors and an increased risk of OC. Including "Basal metabolic rate" (OR= 1.24, P= 6.86×10-4); "Body fat percentage" (OR= 1.22, P= 8.20×10-3); "Hip circumference" (OR= 1.20, P= 5.92×10-4); "Trunk fat mass" (OR= 1.15, P= 1.03×10-2); "Trunk fat percentage" (OR= 1.25, P= 8.55×10-4); "Waist circumference" (OR= 1.23, P= 3.28×10-3); "Weight" (OR= 1.21, P= 9.82×10-4); "Whole body fat mass" (OR= 1.21, P= 4.90×10-4); "Whole body fat-free mass" (OR= 1.19, P= 4.11×10-3) and "Whole body water mass" (OR= 1.21, P= 1.85×10-3). Conclusion: Several metabolic markers linked to altered fat accumulation and distribution are significantly associated with an increased risk of OC.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/epidemiologia , Fatores de Risco , Polimorfismo de Nucleotídeo Único
3.
Medicine (Baltimore) ; 103(25): e38610, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905395

RESUMO

Maintaining a balanced bile acids (BAs) metabolism is essential for lipid and cholesterol metabolism, as well as fat intake and absorption. The development of obesity may be intricately linked to BAs and their conjugated compounds. Our study aims to assess how BAs influence the obesity indicators by Mendelian randomization (MR) analysis. Instrumental variables of 5 BAs were obtained from public genome-wide association study databases, and 8 genome-wide association studies related to obesity indicators were used as outcomes. Causal inference analysis utilized inverse-variance weighted (IVW), weighted median, and MR-Egger methods. Sensitivity analysis involved MR-PRESSO and leave-one-out techniques to detect pleiotropy and outliers. Horizontal pleiotropy and heterogeneity were assessed using the MR-Egger intercept and Cochran Q statistic, respectively. The IVW analysis revealed an odds ratio of 0.94 (95% confidence interval: 0.88, 1.00; P = .05) for the association between glycolithocholate (GLCA) and obesity, indicating a marginal negative causal association. Consistent direction of the estimates obtained from the weighted median and MR-Egger methods was observed in the analysis of the association between GLCA and obesity. Furthermore, the IVW analysis demonstrated a suggestive association between GLCA and trunk fat percentage, with a beta value of -0.014 (95% confidence interval: -0.027, -0.0004; P = .04). Our findings suggest a potential negative causal relationship between GLCA and both obesity and trunk fat percentage, although no association survived corrections for multiple comparisons. These results indicate a trend towards a possible association between BAs and obesity, emphasizing the need for future studies.


Assuntos
Ácidos e Sais Biliares , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Obesidade , Análise da Randomização Mendeliana/métodos , Humanos , Obesidade/genética , Obesidade/epidemiologia , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/sangue , Causalidade
4.
Mol Immunol ; 172: 23-37, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38865801

RESUMO

Ulcerative colitis (UC) is a prevalent inflammatory disorder that emerges in the colon and rectum, exhibiting a rising global prevalence and seriously impacting the physical and mental health of patients. Significant challenges remain in UC treatment, highlighting the need for safe and effective long-term therapeutic approaches. Heralded as a promising physical treatment, the rotating magnetic field (RMF) demonstrates safety, stability, manageability, and efficiency. This study delves into RMF's potential in mitigating DSS-induced UC in mice, assessing disease activity indices (DAI) and pathological alterations such as daily body weight, fecal occult blood, colon length, and morphological changes. Besides, several indexes have been detected, including serum concentrations of pro-inflammatory cytokines (IL6, IL-17A, TNF-α, IFN-γ) and anti-inflammatory cytokines (TGF-ß, IL-4, IL-10), the ratio of splenic CD3+, CD4+, and CD8+ T cells, the rate of apoptotic colonic cells, the expression of colonic inflammatory and tight junction-associated proteins. The results showed that RMF had beneficial effects on the decrease of intestinal permeability, the restoration of tight junctions, and the mitigation of mitochondrial respiratory complexes (MRCs) by attenuating inflammatory dysfunction in colons of DSS-induced UC model of mice. In conclusion, this study demonstrates that RMF attenuates colonic inflammation, enhances colonic tight junction, and alleviates MRCs impairment by regulating the equilibrium of pro-inflammatory and anti-inflammatory cytokines in UC mice, suggesting the potential application of RMF in the clinical treatment of UC.


Assuntos
Colite Ulcerativa , Colo , Citocinas , Sulfato de Dextrana , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Camundongos , Sulfato de Dextrana/toxicidade , Colo/patologia , Citocinas/metabolismo , Magnetoterapia/métodos , Masculino , Inflamação/patologia , Modelos Animais de Doenças , Campos Magnéticos , Camundongos Endogâmicos C57BL
5.
Nat Chem ; 16(5): 762-770, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38365942

RESUMO

Mass spectrometry-based quantitative lipidomics is an emerging field aiming to uncover the intricate relationships between lipidomes and disease development. However, quantifying lipidomes comprehensively in a high-throughput manner remains challenging owing to the diverse lipid structures. Here we propose a diazobutanone-assisted isobaric labelling strategy as a rapid and robust platform for multiplexed quantitative lipidomics across a broad range of lipid classes, including various phospholipids and glycolipids. The diazobutanone reagent is designed to conjugate with phosphodiester or sulfate groups, while accommodating various functional groups on different lipid classes, enabling subsequent isobaric labelling for high-throughput multiplexed quantitation. Our method demonstrates excellent performance in terms of labelling efficiency, detection sensitivity, quantitative accuracy and broad applicability to various biological samples. Finally, we performed a six-plex quantification analysis of lipid extracts from lean and obese mouse livers. In total, we identified and quantified 246 phospholipids in a high-throughput manner, revealing lipidomic changes that may be associated with obesity in mice.


Assuntos
Glicolipídeos , Lipidômica , Fosfolipídeos , Espectrometria de Massas em Tandem , Animais , Glicolipídeos/química , Fosfolipídeos/química , Lipidômica/métodos , Espectrometria de Massas em Tandem/métodos , Camundongos , Sulfatos/química , Fígado/metabolismo , Fígado/química
6.
Eur J Med Res ; 29(1): 68, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245795

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a devastating chronic lung disease characterized by irreversible scarring of the lung parenchyma. Despite various interventions aimed at mitigating several different molecular aspects of the disease, only two drugs with limited clinical efficacy have so far been approved for IPF therapy. OBJECTIVE: We investigated the therapeutic efficacy of amifostine, a detoxifying drug clinically used for radiation-caused cytotoxicity, in bleomycin-induced murine pulmonary fibrosis. METHODS: C57BL6/J mice were intratracheally instilled with 3 U/kg of bleomycin. Three doses of amifostine (WR-2721, 200 mg/kg) were administered intraperitoneally on days 1, 3, and 5 after the bleomycin challenge. Bronchoalveolar lavage fluid (BALF) was collected on day 7 and day 21 for the assessment of lung inflammation, metabolites, and fibrotic injury. Human fibroblasts were treated in vitro with transforming growth factor beta 1 (TGF-ß1), followed by amifostine (WR-1065, 1-4 µg/mL) treatment. The effects of TGF-ß1 and amifostine on the mitochondrial production of reactive oxygen species (ROS) were assessed by live cell imaging of MitoSOX. Cellular metabolism was assessed by the extracellular acidification rate (ECAR), the oxygen consumption rate (OCR), and the concentrations of various energy-related metabolites as measured by mass spectrum (MS). Western blot analysis was performed to investigate the effect of amifostine on sirtuin 1 (SIRT1) and adenosine monophosphate activated kinase (AMPK). RESULTS: Three doses of amifostine significantly attenuated lung inflammation and pulmonary fibrosis. Pretreatment and post-treatment of human fibroblast cells with amifostine blocked TGF-ß1-induced mitochondrial ROS production and mitochondrial dysfunction in human fibroblast cells. Further, treatment of fibroblasts with TGF-ß1 shifted energy metabolism away from mitochondrial oxidative phosphorylation (OXPHOS) and towards glycolysis, as observed by an altered metabolite profile including a decreased ratio of NAD + /NADH and increased lactate concentration. Treatment with amifostine significantly restored energy metabolism and activated SIRT1, which in turn activated AMPK. The activation of AMPK was required to mediate the effects of amifostine on mitochondrial homeostasis and pulmonary fibrosis. This study provides evidence that repurposing of the clinically used drug amifostine may have therapeutic applications for IPF treatment. CONCLUSION: Amifostine inhibits bleomycin-induced pulmonary fibrosis by restoring mitochondrial function and cellular metabolism.


Assuntos
Amifostina , Fibrose Pulmonar Idiopática , Pneumonia , Humanos , Animais , Camundongos , Bleomicina/efeitos adversos , Fator de Crescimento Transformador beta1 , Amifostina/efeitos adversos , Sirtuína 1/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , NAD/metabolismo , NAD/farmacologia , NAD/uso terapêutico , Espécies Reativas de Oxigênio/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Pulmão , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Camundongos Endogâmicos C57BL
7.
Biomed Pharmacother ; 171: 116182, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38262146

RESUMO

Endometriosis is a disease characterized by the ectopic growth of endometrial tissue (glands and stroma) outside the confines of the uterus and often involves vital organs such as the intestines and urinary system. Endometriosis is considered a refractory disease owing to its enigmatic etiology, propensity for recurrence following conservative or surgical interventions, and the absence of radical treatment and long-term management. In recent years, the incidence of endometriosis has gradually increased, rendering it a pressing concern among women of childbearing age. A more profound understanding of its pathogenesis can significantly improve prognosis. Recent research endeavors have spotlighted the molecular mechanisms by which microRNAs (miRNAs) regulate the occurrence and progression of endometriosis. Many miRNAs have been reported to be aberrantly expressed in the affected tissues of both patients and animal models. These miRNAs actively participate in the regulation of inflammatory reactions, cellular proliferation, angiogenesis, and tissue remodeling. Their capacity to modulate crucial signaling pathways, such as the Wnt/ß-catenin signaling pathway, reinforces their potential utility as diagnostic markers or therapeutic agents for endometriosis. In this review, we provide the latest insights into the role of miRNAs that interact with the Wnt/ß-catenin pathway to regulate the biological behaviors of endometriosis cells and disease-related symptoms, such as pain and infertility. We hope that this review will provide novel insights and promising targets for innovative therapies addressing endometriosis.


Assuntos
Endometriose , MicroRNAs , Animais , Humanos , Feminino , Endometriose/patologia , Via de Sinalização Wnt/fisiologia , Proliferação de Células , Modelos Animais de Doenças , beta Catenina/metabolismo
8.
Front Endocrinol (Lausanne) ; 14: 1307468, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075077

RESUMO

Background: Despite the well-established findings of a higher incidence of retina-related eye diseases in patients with diabetes, there is less investigation into the causal relationship between diabetes and non-retinal eye conditions, such as age-related cataracts and glaucoma. Methods: We performed Mendelian randomization (MR) analysis to examine the causal relationship between type 2 diabetes mellitus (T2DM) and 111 ocular diseases. We employed a set of 184 single nucleotide polymorphisms (SNPs) that reached genome-wide significance as instrumental variables (IVs). The primary analysis utilized the inverse variance-weighted (IVW) method, with MR-Egger and weighted median (WM) methods serving as supplementary analyses. Results: The results revealed suggestive positive causal relationships between T2DM and various ocular conditions, including "Senile cataract" (OR= 1.07; 95% CI: 1.03, 1.11; P=7.77×10-4), "Glaucoma" (OR= 1.08; 95% CI: 1.02, 1.13; P=4.81×10-3), and "Disorders of optic nerve and visual pathways" (OR= 1.10; 95% CI: 0.99, 1.23; P=7.01×10-2). Conclusion: Our evidence supports a causal relationship between T2DM and specific ocular disorders. This provides a basis for further research on the importance of T2DM management and prevention strategies in maintaining ocular health.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças Retinianas , Humanos , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Análise da Randomização Mendeliana , Face , Retina
9.
Front Endocrinol (Lausanne) ; 14: 1295040, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152136

RESUMO

Background: The existing literature on the relationship of hyperparathyroidism with both blood counts and biochemical indicators primarily comprises observational studies, which have produced inconsistent findings. This study aimed to evaluate the causal relationship between hyperparathyroidism and blood counts and biochemical indicators. Methods: Mendelian randomization (MR) analyses were conducted to investigate the associations between hyperparathyroidism and the identified 55 blood counts and biochemical indicators. The genome-wide association study (GWAS) for hyperparathyroidism data was obtained from FinnGen, while the GWASs for the blood counts and biochemical indicators were sourced from the UK Biobank (UKBB). Results: The MR analysis using the inverse-variance weighted (IVW) method revealed potential causality between genetically predicted hyperparathyroidism and seven out of 55 blood counts and biochemical indicators. These markers include "Platelet count" (Beta = -0.041; 95% CI: -0.066, -0.016; p = 0.001), "Platelet distribution width (PDW)" (Beta = 0.031; 95% CI: 0.006, 0.056; p = 0.016), "Mean platelet volume (MPV)" (Beta = 0.043; 95% CI: 0.010, 0.076; p = 0.011), "Vitamin D" (Beta = -0.038; 95% CI: -0.063, -0.013; p = 0.003), "Calcium (Ca2+)" (Beta = 0.266; 95% CI: 0.022, 0.509; p = 0.033), "Phosphate" (Beta = -0.114; 95% CI: -0.214, -0.014; p = 0.025), and "Alkaline phosphatase (ALP)" (Beta = 0.030; 95% CI: 0.010, 0.049; p = 0.003). Conclusion: The findings of our study revealed a suggestive causal relationship between hyperparathyroidism and blood cell count as well as biochemical markers. This presents a novel perspective for further investigating the etiology and pathological mechanisms underlying hyperparathyroidism.


Assuntos
Estudo de Associação Genômica Ampla , Hiperparatireoidismo , Humanos , Análise da Randomização Mendeliana , Contagem de Plaquetas , Fosfatase Alcalina
10.
Anal Chem ; 95(50): 18504-18513, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38033201

RESUMO

Amino acids (AAs) in the d-form are involved in multiple pivotal neurological processes, although their l-enantiomers are most commonly found. Mass spectrometry-based analysis of low-abundance d-AAs has been hindered by challenging enantiomeric separation from l-AAs, low sensitivity for detection, and lack of suitable internal standards for accurate quantification. To address these critical gaps, N,N-dimethyl-l-leucine (l-DiLeu) tags are first validated as novel chiral derivatization reagents for chromatographic separation of 20 pairs of d/l-AAs, allowing the construction of a 4-plex isobaric labeling strategy for enantiomer-resolved quantification through single step tagging. Additionally, the creative design of N,N-dimethyl-d-leucine (d-DiLeu) reagents offers an alternative approach to generate analytically equivalent internal references of d-AAs using d-DiLeu-labeled l-AAs. By labeling cost-effective l-AA standards using paired d- and l-DiLeu, this approach not only enables absolute quantitation of both d-AAs and l-AAs from complex biological matrices with enhanced precision but also significantly boosts the combined signal intensities from all isobaric channels, greatly improving the detection and quantitation of low-abundance AAs, particularly d-AAs. We term this quantitative strategy CHRISTMAS, which stands for chiral pair isobaric labeling strategy for multiplexed absolute quantitation. Leveraging the ion mobility collision cross section (CCS) alignment, interferences from coeluting isomers/isobars are effectively filtered out to provide improved quantitative accuracy. From wild-type and Alzheimer's disease (AD) mouse brains, we successfully quantified 20 l-AAs and 5 d-AAs. The significant presence and differential trends of certain d-AAs compared to those of their l-counterparts provide valuable insights into the involvement of d-AAs in aging, AD progression, and neurodegeneration.


Assuntos
Aminoácidos , Proteômica , Animais , Camundongos , Aminoácidos/análise , Proteômica/métodos , Leucina/química , Aminas , Cromatografia Líquida/métodos
11.
J Mater Chem B ; 11(41): 9912-9921, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37850305

RESUMO

Ligation efficiency in a surface-based DNA click chemistry (CuAAC) reaction is extremely restricted by the orientation and density of probes arranged on a heterogeneous surface. Herein, we engineer DNA tetrahedral nanostructure (DTN)-corbelled click chemistry to trigger a hybridization chain reaction (HCR) assembling a large-scale of nanozymes for ratiometric fluorescence detection of DNA adenine methyltransferase (Dam). In this study, a DNA tetrahedron structure with an alkynyl modifying pendant DNA probe (Alk-DTN) is designed and assembled on a magnetic bead (MB) as a scaffold for click chemistry. When a CuO NP-encoded magnetic nanoparticle (CuO-MNP) substrate was methylated by Dam, CuO NPs were released and turned into a mass of Cu+. The Cu+ droves azido modifying lDNA (azide-lDNA) to connect with the Alk-DTN probe on the MB through the click reaction, forming an intact primer to initiate the HCR. The HCR product, a rigid structure double-stranded DNA, periodically assembles glucose oxidase mimicking gold nanoparticles (GNPs) into a large-scale of nanozymes for catalyzing the oxidation of glucose to H2O2. NH2-MIL-101 MOFs, a fluorescent indicator and a biomimetic catalyst, activated the product H2O2 to oxidize o-phenylenediamine (oPD) into visually detectable 2,3-diaminophenazine (DAP). The change of the signal ratio between DAP and NH2-MIL-101 is proportional to the methylation event corresponding to the MTase activity. In this study, the DTN enhances the efficiency of the surface-based DNA click reaction and maintains the catalytic activities of gold nanoparticle nanozymes due to the intrinsic nature of mechanical rigidity and well-controlled orientation and well-adjusted size. Large-scale assembly of nanozymes circumvents the loss of natural enzyme activity caused by chemical modification and greatly improves the amplification efficiency. The proposed biosensor displayed a low detection limit of 0.001 U mL-1 for Dam MTase due to multiple amplification and was effective in real samples and methylation inhibitor screening, providing a promising modular platform for bioanalysis.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Química Click , Peróxido de Hidrogênio , Nanopartículas Metálicas/química , DNA/química , Metiltransferases , Receptores Proteína Tirosina Quinases
12.
Anal Bioanal Chem ; 415(19): 4649-4660, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37306781

RESUMO

This study proposes a nitrogen and sulfur co-doped carbon dot (N/S-CD)-based FRET ratiometric fluorescence aptasensing strategy modulated with entropy-driven DNA amplifier for sensitive and accurate detection of ochratoxin A (OTA). In the strategy, a duplex DNA probe containing OTA aptamer and complementary DNA (cDNA) is designed as a recognition and transformation element. Upon sensing of target OTA, the cDNA was liberated, and triggered a three-chain DNA composite-based entropy-driven DNA circuit amplification, making CuO probes anchor on a magnetic bead (MB). The CuO-encoded MB complex probe is finally turned into abundant Cu2+, which oxidizes o-phenylenediamine (oPD) to generate 2,3-diaminophenazine (DAP) with yellow fluorescence and further triggers FRET between the blue fluorescent N/S-CDs and DAP. The changes in ratiometric fluorescence are related to the OTA concentration. Originating from the synergistic amplifications from the entropy-driven DNA circuits and Cu2+ amplification, the strategy dramatically enhanced detection performance. A limit of detection as low as 0.006 pg/mL of OTA was achieved. Significantly, the aptasensor can visually evaluate the OTA via on-site visual screening. Moreover, the high-confidence quantification of the OTA in real samples with results consistent with that of the LC-MS method indicated that the proposed strategy has practical application prospects for sensitive and accurate quantification in food safety.


Assuntos
Pontos Quânticos , Nitrogênio/química , Enxofre/química , Pontos Quânticos/química , Entropia , Transferência Ressonante de Energia de Fluorescência , DNA/química
13.
iScience ; : 107177, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37366395

RESUMO

Pandemics such as COVID-19 threaten income growth by disrupting productive activities for households, especially those who have just escaped from poverty. We provide empirical evidence on how pandemic disproportionately threatens the rural productive livelihood based on 48 months of household production electricity consumption data. The results show that after COVID-19, the productive livelihood activities of 51.11% households who have just overcome poverty have returned to the level before poverty alleviation. Their productive livelihood activities dropped by 21.81% on average during the national COVID-19 epidemic and by 40.57% during the regional epidemic. The households with lower income, lower level of education and less labor force even suffer more. We estimate 3.74% decline in income owing to the decrease in productive activities, resulting in 5.41% of households potentially falling back into poverty. This study provides an important reference for countries being at risk of returning to poverty after pandemic.

14.
Cells ; 12(7)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-37048045

RESUMO

Ankylosing spondylitis (AS) is clinically characterized by bone fusion that is induced by the pathological formation of extra bone. Unfortunately, the fundamental mechanism and related therapies remain unclear. The loss of SHP-2 (encoded by Ptpn11) in CD4-Cre;Ptpn11f/f mice resulted in the induction of AS-like pathological characteristics, including spontaneous cartilage and bone lesions, kyphosis, and arthritis. Hence, this mouse was utilized as an AS model in this study. As one of the basic physical fields, the magnetic field (MF) has been proven to be an effective treatment method for articular cartilage degeneration. In this study, the effects of a rotating magnetic field (RMF; 0.2 T, 4 Hz) on an AS-like mouse model were investigated. The RMF treatment (2 h/d, 0.2 T, 4 Hz) was performed on AS mice from two months after birth until the day before sampling. The murine specimens were subjected to transcriptomics, immunomics, and metabolomics analyses, combined with molecular and pathological experiments. The results demonstrated that the mitigation of inflammatory deterioration resulted in an increase in functional osteogenesis and a decrease in dysfunctional osteolysis due to the maintenance of bone homeostasis via the RANKL/RANK/OPG signaling pathway. Additionally, by regulating the ratio of CD4+ and CD8+ T-cells, RMF treatment rebalanced the immune microenvironment in skeletal tissue. It has been observed that RMF interventions have the potential to alleviate AS, including by decreasing pathogenicity and preventing disease initiation. Consequently, RMF, as a moderately physical therapeutic strategy, could be considered to alleviate the degradation of cartilage and bone tissue in AS and as a potential option to halt the progression of AS.


Assuntos
Cartilagem Articular , Espondilite Anquilosante , Camundongos , Animais , Espondilite Anquilosante/terapia , Condrócitos/patologia , Osteócitos , Cartilagem Articular/patologia , Campos Magnéticos
15.
ACS Appl Mater Interfaces ; 15(2): 2940-2950, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36598797

RESUMO

The cathodic product Li2CO3, due to its high decomposition potential, has hindered the practical application of rechargeable Li-CO2/O2 batteries. To overcome this bottleneck, a Pt/FeNC cathodic catalyst is fabricated by dispersing Pt nanoparticles (NPs) with a uniform size of 2.4 nm and 8.3 wt % loading amount into a porous microcube FeNC support for high-performance rechargeable Li-CO2/O2 batteries. The FeNC matrix is composed of numerous two-dimensional (2D) carbon nanosheets, which is derived from an Fe-doping zinc metal-organic framework (Zn-MOF). Importantly, using Pt/FeNC as the cathodic catalyst, the Li-CO2/O2 (VCO2/VO2 = 4:1) battery displays the lowest overpotential of 0.54 V and a long-term stability of 142 cycles, which is superior to batteries with FeNC (1.67 V, 47 cycles) and NC (1.87 V, 23 cycles) catalysts. The FeNC matrix and Pt NPs can exert a synergetic effect to decrease the decomposition potential of Li2CO3 and thus enhance the battery performance. In situ Fourier transform infrared (FTIR) spectroscopy further confirms that Li2CO3 can be completely decomposed under a low potential of 3.3 V using the Pt/FeNC catalyst. Impressively, Li2CO3 exhibits a film structure on the surface of the Pt/FeNC catalysts by scanning electron microscopy (SEM), and its size can be limited by the confined space between the carbon sheets in Pt/FeNC, which enlarges the better contacting interface. In addition, density functional theory (DFT) calculations reveal that the Pt and FeNC catalysts show a higher adsorption energy for Li2CO3 and Li2CO4 intermediates compared to the NC catalyst, and the possible discharge pathways are deeply investigated. The synergetic effect between the FeNC support and Pt active sites makes the Li-CO2/O2 battery achieve optimal performance.

17.
Anal Bioanal Chem ; 415(1): 203-210, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36333614

RESUMO

Developing simple, efficient, and inexpensive method for trace amount organophosphorus pesticides' (OPs) detection with high sensitivity and specificity is of significant importance for guaranteeing food safety. Herein, an Ag/Au bimetallic nanoparticle-based acetylcholinesterase (AChE) surface-enhanced Raman scattering (SERS) biosensor was constructed for in situ simple and sensitive detection of pesticide residues in food. The principle of this biosensor exploited 4-mercaptophenylboronic acid (4-MPBA)-modified Ag/Au bimetallic nanoprobes as SERS signal probe to improve sensitivity and stability. The combination of AChE and choline oxidase (CHO) can hydrolyze acetylcholine (ATCh) to generate H2O2. The product of H2O2 selectively oxidizes the boronate ester of 4-MPBA, decreasing the Raman intensity of the B-O symmetric stretching. In the presence of OPs, it could inhibit the production of H2O2 by destroying the AChE activity, so the reduction of the SERS signal was also alleviated. Based on the principle, an Ag/Au bimetallic nanoparticle-based AChE SERS sensor was established without any complicated pretreatments. Benefiting from the synergistic effects of Ag/Au bimetallic hybrids, a linear detection range from 5×10-9 to 5×10-4 M was achieved with a limit of detection down to 1.7×10-9 M using parathion-methyl (PM) as the representative model of OPs. Moreover, the SERS biosensor uses readily available reagents and is simple to implement. Importantly, the proposed SERS biosensor was used to quantitatively analyze OP residues in apple peels. The levels of OPs detected in real samples by this method were consistent with those obtained using gas chromatography-mass spectrometry (GC-MS), suggesting the proposed assay has great potential applications for OPs in situ detection in food safety fields.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanopartículas , Resíduos de Praguicidas , Praguicidas , Acetilcolinesterase/química , Técnicas Biossensoriais/métodos , Ouro/química , Peróxido de Hidrogênio/química , Nanopartículas Metálicas/química , Compostos Organofosforados/análise , Resíduos de Praguicidas/análise , Praguicidas/análise , Análise Espectral Raman , Prata
18.
Front Endocrinol (Lausanne) ; 14: 1321576, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260151

RESUMO

Background: Previous observational studies have investigated the association between endocrine and metabolic factors and idiopathic pulmonary fibrosis (IPF), yet have produced inconsistent results. Therefore, it is imperative to employ the Mendelian randomization (MR) analysis method to conduct a more comprehensive investigation into the impact of endocrine and metabolic factors on IPF. Methods: The instrumental variables (IVs) for 53 endocrine and metabolic factors were sourced from publicly accessible genome-wide association study (GWAS) databases, with GWAS summary statistics pertaining to IPF employed as the dependent variables. Causal inference analysis encompassed the utilization of three methods: inverse-variance weighted (IVW), weighted median (WM), and MR-Egger. Sensitivity analysis incorporated the implementation of MR-PRESSO and leave-one-out techniques to identify potential pleiotropy and outliers. The presence of horizontal pleiotropy and heterogeneity was evaluated through the MR-Egger intercept and Cochran's Q statistic, respectively. Results: The IVW method results reveal correlations between 11 traits and IPF. After correcting for multiple comparisons, seven traits remain statistically significant. These factors include: "Weight" (OR= 1.44; 95% CI: 1.16, 1.78; P=8.71×10-4), "Body mass index (BMI)" (OR= 1.35; 95% CI: 1.13, 1.62; P=1×10-3), "Whole body fat mass" (OR= 1.40; 95% CI: 1.14, 1.74; P=1.72×10-3), "Waist circumference (WC)" (OR= 1.54; 95% CI: 1.16, 2.05; P=3.08×10-3), "Trunk fat mass (TFM)" (OR=1.35; 95% CI: 1.10,1.65; P=3.45×10-3), "Body fat percentage (BFP)" (OR= 1.55; 95% CI: 1.15,2.08; P=3.86×10-3), "Apoliprotein B (ApoB)" (OR= 0.78; 95% CI: 0.65,0.93; P=5.47×10-3). Additionally, the sensitivity analysis results confirmed the reliability of the MR results. Conclusion: The present study identified causal relationships between seven traits and IPF. Specifically, ApoB exhibited a negative impact on IPF, while the remaining six factors demonstrated a positive impact. These findings offer novel insights into the underlying etiopathological mechanisms associated with IPF.


Assuntos
Estudo de Associação Genômica Ampla , Fibrose Pulmonar Idiopática , Humanos , Análise da Randomização Mendeliana , Reprodutibilidade dos Testes , Fibrose Pulmonar Idiopática/genética , Apolipoproteínas B
19.
Front Endocrinol (Lausanne) ; 14: 1276836, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260157

RESUMO

Background: Previous research on the association between risk factors and gestational diabetes mellitus (GDM) primarily comprises observational studies with inconclusive results. The objective of this study is to investigate the causal relationship between 108 traits and GDM by employing a two-sample Mendelian randomization (MR) analysis to identify potential risk factors of GDM. Methods: We conducted MR analyses to explore the relationships between traits and GDM. The genome-wide association studies (GWAS) for traits were primarily based on data from the UK Biobank (UKBB), while the GWAS for GDM utilized data from FinnGen. We employed a false discovery rate (FDR) of 5% to account for multiple comparisons. Results: The inverse-variance weighted (IVW) method indicated that the genetically predicted 24 risk factors were significantly associated with GDM, such as "Forced expiratory volume in 1-second (FEV1)" (OR=0.76; 95% CI: 0.63, 0.92), "Forced vital capacity (FVC)" (OR=0.74; 95% CI: 0.64, 0.87), "Usual walking pace" (OR=0.19; 95% CI: 0.09, 0.39), "Sex hormone-binding globulin (SHBG)" (OR=0.86; 95% CI: 0.78, 0.94). The sensitivity analyses with MR-Egger and weighted median methods indicated consistent results for most of the trats. Conclusion: Our study has uncovered a significant causal relationship between 24 risk factors and GDM. These results offer a new theoretical foundation for preventing or mitigating the risks associated with GDM.


Assuntos
Diabetes Gestacional , Feminino , Humanos , Gravidez , Diabetes Gestacional/epidemiologia , Diabetes Gestacional/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Fatores de Risco , Fenótipo
20.
Front Nutr ; 10: 1250509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188872

RESUMO

Background: The existing literature on the link between sodium intake and cardiovascular disease (CVD) largely consists of observational studies that have yielded inconsistent conclusions. In this study, our objective is to assess the causal relationship between sodium intake and 50 CVDs using two-sample Mendelian randomization (MR) analysis. Methods: MR analyses were performed to investigate the associations between urinary sodium/creatinine ratio (UNa/UCr), an indicator of sodium intake, and 50 CVDs. The genome-wide association study (GWAS) for UNa/UCr was from the UK Biobank (UKBB), and the GWASs for CVDs were from FinnGen. A false discovery rate (FDR) threshold of 5% was applied for multiple comparison correction. Results: The inverse-variance weighted method indicated that the genetically predicted UNa/UCr was significantly associated with 7 of 50 CVDs, including "Coronary atherosclerosis" (OR = 2.01; 95% CI: 1.37, 2.95), "Diseases of arteries, arterioles and capillaries" (OR = 1.88; 95% CI: 1.20, 2.94), "Hard cardiovascular diseases" (OR = 1.71; 95% CI: 1.24, 2.35), "Ischemic heart diseases" (OR = 2.06; 95% CI: 1.46, 2.93), "Major coronary heart disease event" (OR = 1.99; 95% CI: 1.36, 2.91), "Myocardial infarction" (OR = 2.03; 95% CI: 1.29, 3.19), and "Peripheral artery disease" (OR = 2.50; 95% CI: 1.35, 4.63). Similar results were obtained with the MR-Egger and weighted median methods. No significant heterogeneity or horizontal pleiotropy was found in this analysis. Conclusion: Our study has uncovered a significant positive causal relationship between UNa/UCr and various CVDs. These results offer a new theoretical foundation for advocating the restriction of sodium intake as a preventive measure against CVD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...