Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Sensors (Basel) ; 24(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38610490

RESUMO

On-orbit assembling space telescope (OAST) is one of the most feasible methods to implement a large-scale space telescope. Unlike a monolithic space telescope (such as Hubble Space Telescope, HST) or a deployable space telescope (such as James Webb Space Telescope, JWST), OAST can be assembled in the spatial environment. To ensure proper telescope performance, OAST must be equipped with a large deployable sunshade. In order to verify the technology of the OAST, the authors propose a modular space telescope on the China Space Station (CSS) and design a deployable sunshade. The deployable mechanism of the sunshade is made up of a radial deployable mechanism and an axial deployable mechanism. The paper describes the overall design approach, the key component technologies, and the design and preliminary testing of a part of the deployable sunshade assembly.

2.
Adv Mater ; 36(19): e2312148, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38314966

RESUMO

Recently, utilizing the air breakdown effect in the charge excitation strategy proves as an efficient charge injection technique to increase the surface charge density of dielectric polymers for triboelectric nanogenerators (TENGs). However, quantitative characterization of the ability of dielectric polymers to trap reverse charges and the effect on the startup time of secondary self-charge excitation (SSCE) are essential for extensive applications. Here, an ultra-fast charge self-injection technique based on a self-charge excitation strategy is proposed, and a standard method to quantify the charge trapping and de-trapping abilities of 23 traditional tribo-materials is introduced. Further, the relationship among the distribution of dielectric intrinsic deep, shallow trap states, and transportation of trapped charges is systematically analyzed in this article. It shows that the de-trapping rate of charges directly determines the reactivation and failure of SSCE. Last, independent of TENG contact efficiency, an ultra-high charge density of 2.67 mC m-2 and an ultra-fast startup time of SSCE are obtained using a 15 µm poly(vinylidene fluoride-trifluoroethylene) film, breaking the historical record for material modification. As a standard for material selection, this work quantifies the charge trapping and de-trapping ability of the triboelectric dielectric series and provides insights for understanding the charge transport in dielectrics.

3.
Glob Chall ; 8(1): 2300086, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38223892

RESUMO

Inhospitable, inaccessible, and extremely remote alike the famed pole of inaccessibility, aka Point Nemo, the isolated locations in deserts, at sea, or in outer space are difficult for humans to settle, let alone to thrive in. Yet, they present a unique set of opportunities for science, economy, and geopolitics that are difficult to ignore. One of the critical challenges for settlers is the stable supply of energy both to sustain a reasonable quality of life, as well as to take advantage of the local opportunities presented by the remote environment, e.g., abundance of a particular resource. The possible solutions to this challenge are heavily constrained by the difficulty and prohibitive cost of transportation to and from such a habitat (e.g., a lunar or Martian base). In this essay, the advantages and possible challenges of integrating Fischer-Tropsch, artificial photosynthesis, and plasma catalysis into a robust, scalable, and efficient self-contained system for energy harvesting, storage, and utilization are explored.

4.
J Sci Food Agric ; 104(4): 1861-1873, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37851871

RESUMO

In recent years, the increase in high-calorie diets and sedentary lifestyles has made obesity a global public health problem. An unbalanced diet promotes the production of proinflammatory cytokines and causes redox imbalance in the body. Phenolics have potent antioxidant activity and cytoprotective ability. They can scavenge free radicals and reactive oxygen species, and enhance the activity of antioxidant enzymes, thus combating the body's oxidative stress. They can also improve the body's inflammatory response, enhance the enzyme activity of lipid metabolism, and reduce the contents of cholesterol and triglyceride. Most phenolics are biotransformed and absorbed into the blood after the action by gut microbiota; these metabolites then undergo phase I and II metabolism and regulate oxidative stress by scavenging free radicals and increasing expression of antioxidant enzymes. Phenolics induce the expression of genes encoding antioxidant enzymes and phase II detoxification enzymes by stimulating Nrf2 to enter the nucleus and bind to the antioxidant response element after uncoupling from Keap1, thereby promoting the production of antioxidant enzymes and phase II detoxification enzymes. The absorption rate of phenolics in the small intestine is extremely low. Most phenolics reach the colon, where they interact with the microbiota and undergo a series of metabolism. Their metabolites will reach the liver via the portal vein and undergo conjugation reactions. Subsequently, the metabolites reach the whole body to exert biological activity by traveling with the systemic circulation. Phenolics can promote the growth of probiotics, reduce the ratio of Firmicutes/Bacteroidetes (F/B), and improve intestinal microecological imbalance. This paper reviews the nutritional value, bioactivity, and antioxidant mechanism of phenolics in the body, aiming to provide a scientific basis for the development and utilization of natural antioxidants and provide a reference for elucidating the mechanism of action of phenolics for regulating oxidative stress in the body. © 2023 Society of Chemical Industry.


Assuntos
Antioxidantes , Microbioma Gastrointestinal , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Estresse Oxidativo , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo
5.
Sensors (Basel) ; 23(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37430618

RESUMO

Ellipticity performance of space telescopes is important for exploration of dark matter. However, traditional on-orbit active optical alignment of space telescopes often takes "minimum wavefront error across the field of view" as the correction goal, and the ellipticity performance after correcting the wave aberration is not optimal. This paper proposes an active optical alignment strategy to achieve optimal ellipticity performance. Based on the framework of nodal aberration theory (NAT), the aberration field distribution corresponding to the optimal full field-of-view ellipticity is determined using global optimization. The degrees of freedom (DOFs) of the secondary mirror and the folded flat mirror are taken as the compensation DOFs to achieve the optimal ellipticity performance. Some valuable insights into aberration field characteristics corresponding to optimal ellipticity performance are presented. This work lays a basis for the correction of ellipticity for complicated optical systems.

6.
Sensors (Basel) ; 23(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37430879

RESUMO

The presence of manufacture error in large mirrors introduces high-order aberrations, which can severely influence the intensity distribution of point spread function. Therefore, high-resolution phase diversity wavefront sensing is usually needed. However, high-resolution phase diversity wavefront sensing is restricted with the problem of low efficiency and stagnation. This paper proposes a fast high-resolution phase diversity method with limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm, which can accurately detect aberrations in the presence of high-order aberrations. An analytical gradient of the objective function for phase-diversity is integrated into the framework of the L-BFGS nonlinear optimization algorithm. L-BFGS algorithm is specifically suitable for high-resolution wavefront sensing where a large phase matrix is optimized. The performance of phase diversity with L-BFGS is compared to other iterative method through simulations and a real experiment. This work contributes to fast high-resolution image-based wavefront sensing with a high robustness.

7.
Opt Express ; 31(9): 13981-13997, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157272

RESUMO

A segmented primary mirror (PM) is an efficient solution to the problems of a monolithic PM manufacture, testing, transportation, and launch. However, the problem of the radius of curvature (ROC) matching among PM segments will arise, which if not solved will seriously degrade the final imaging quality of the system. Accurately detecting ROC mismatch among PM segments from the wavefront map is of crucial importance for efficiently correcting this kind of manufacturing error, while currently there are few related studies. Based on the inherent relation between the PM segment's ROC error and corresponding sub-aperture defocus aberration, this paper proposes that the ROC mismatch can be accurately estimated from the sub-aperture defocus aberration. Secondary mirror (SM) lateral misalignments will influence the accuracy of estimating ROC mismatch. A strategy is also proposed to reduce the influence of SM lateral misalignments. Detailed simulations are performed to demonstrate the effectiveness of the proposed method for detecting ROC mismatch among PM segments. This paper paves a road for detecting ROC mismatch using image-based wavefront sensing methods.

8.
Nanoscale Horiz ; 8(5): 568-602, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36928662

RESUMO

Low-dimensional copper oxide nanostructures are very promising building blocks for various functional materials targeting high-demanded applications, including energy harvesting and transformation systems, sensing and catalysis. Featuring a very high surface-to-volume ratio and high chemical reactivity, these materials have attracted wide interest from researchers. Currently, extensive research on the fabrication and applications of copper oxide nanostructures ensures the fast progression of this technology. In this article we briefly outline some of the most recent, mostly within the past two years, innovations in well-established fabrication technologies, including oxygen plasma-based methods, self-assembly and electric-field assisted growth, electrospinning and thermal oxidation approaches. Recent progress in several key types of leading-edge applications of CuO nanostructures, mostly for energy, sensing and catalysis, is also reviewed. Besides, we briefly outline and stress novel insights into the effect of various process parameters on the growth of low-dimensional copper oxide nanostructures, such as the heating rate, oxygen flow, and roughness of the substrates. These insights play a key role in establishing links between the structure, properties and performance of the nanomaterials, as well as finding the cost-and-benefit balance for techniques that are capable of fabricating low-dimensional CuO with the desired properties and facilitating their integration into more intricate material architectures and devices without the loss of original properties and function.

9.
Biomicrofluidics ; 17(1): 014101, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36619874

RESUMO

Breast cancer metastasis involves complex mechanisms, particularly when patients are undergoing chemotherapy. In tissues, tumor cells encounter cell-cell interactions, cell-microenvironment interactions, complex nutrient, and drug gradients. Currently, two-dimensional cell culture systems and animal models are challenging to observe and analyze cell responses to microenvironments with various physical and bio-chemical conditions, and microfluidic technology has been systematically developed to address this dilemma. In this study, we have constructed a combined chemotherapy evaluation chip (CCEC) based on microfluidic technology. The chip possesses 192 diamond-shaped microchambers containing MDA-MB-231-RFP cells, and each microchamber is composed of collagen to mimic breast cancer and its surrounding microenvironment. In addition, by adding medium containing different drugs to the medium channels of CCEC, composite drug (paclitaxel+gemcitabine+7rh and paclitaxel+fluorouracil+PP2) concentration gradients, and single drug (paclitaxel, gemcitabine, 7rh, fluorouracil, PP2) concentration gradients have been established in the five collagen regions, respectively, so that each localized microchamber in the regions has a unique drug microenvironment. In this way, we evaluated the composite and single chemotherapy efficacy on the same chip by statistically analyzing their effects on the numbers and migration of the cell. The quantitative results in CCECs reveal that the inhibition effects on the numbers and migration of MDA-MB-231-RFP cell under the composite drug gradients are more optimal than those of the single drugs. Besides, the cancer cell inhibition effect between the groups composed of two drugs has also been compared, that is the paclitaxel+gemcitabine, paclitaxel+fluorouracil, and paclitaxel+PP2 have better cell numbers and migration inhibition effects than paclitaxel+7rh. The results indicate that the bio-mimetic and high-throughput combined chemotherapy evaluation platform can serve as a more efficient and accurate tool for preclinical drug development and screening.

10.
Sci Total Environ ; 858(Pt 3): 160119, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370784

RESUMO

The ubiquitous EPS (extracellular polymeric substances), as a type of dissolved organic carbon, plays a key role in carbon cycling in water environment. When EPS meet the omnipresent PFOS (perfluorooctane sulfonate), they must interact with each other and exert profound effect on behavior and fate of both, which is still not well known. We hypothesized that the highly persistent PFOS at real environmental levels may significantly influence behavior of EPS under solar irradiation which may retard carbon turnover. In this study, 3D-EEM fluorescence spectroscopy and FTIR spectroscopy were used to probe responses of composition and structure of EPS under solar irradiation in the absence and presence of PFOS (5-500 ng/L). The experimental results showed that PFOS at ng/L levels significantly affected responses of EPS to sunlight irradiation and the effects were dependent on the components in EPS. Photostability of humic-like substances was significantly increased in the presence of PFOS; Degradation and unfolding of proteins induced by solar light were reduced by PFOS. In addition, degradation of both hydrophilic and hydrophobic functional groups by sunlight was inhibited by PFOS. The novel findings provide new insights for assessing the environmental behavior of EPS and PFOS and understanding the effect of PFOS on carbon cycling in water environments.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Água , Análise Espectral
11.
Water Res ; 227: 119345, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395569

RESUMO

EPS (exopolymers) play a central role in global carbon cycling due to huger amount in aquatic environment, and PFOS (Perfluorooctane sulfonate) is also ubiquitous and persistent pollutant. Whether and how can PFOS of environmental concentrations affect behavior and fate of EPS was unclear. In this study, for the first time interaction between lake EPS and PFOS of environmental concentrations was visually probed by AFM-IR technique. It was found that EPS could effectively trap PFOS and the latter of environmental concentrations could trigger nanoscale reassembly of the former. Sandwiched PFOS-EPS nanostructures were formed via supramolecular interaction between EPS and PFOS, confirmed by fluorescence quenching titration and FTIR spectroscopy. The PFOS microlayers sandwiched in EPS was proven to be a light shield that could protect EPS from photodegradation because of its high reflectivity and nearly zero absorbance of UV-Vis light. The light shielding effect of PFOS was confirmed by evidences from photodegradation experiments, including change of concentrations of ions released and molecular weight distribution patterns. These novel findings provided valuable information for deep insight into environmental behavior of PFOS and its effects on biogeochemical carbon cycle of biopolymers in global waters.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Nanoestruturas , Fotólise , Lagos , Alimentos
12.
Nanomaterials (Basel) ; 12(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36364652

RESUMO

Stability of advanced functional materials subjected to extreme conditions involving ion bombardment, radiation, or reactive chemicals is crucial for diverse applications. Here we demonstrate the excellent stability of wafer-scale thin films of vertically aligned hexagonal BN nanosheets (hBNNS) exposed to high-energy ions and reactive atomic oxygen representative of extreme conditions in space exploration and other applications. The hBNNS are fabricated catalyst-free on wafer-scale silicon, stainless steel, copper and glass panels at a lower temperature of 400 °C by inductively coupled plasma (ICP) assisted chemical vapor deposition (CVD) and subsequently characterized. The resistance of BNNS to high-energy ions was tested by immersing the samples into the plasma plume at the anode of a 150 W Hall Effect Thruster with BNNS films facing Xenon ions, revealing that the etching rate of BNNS is 20 times less than for a single-crystalline silicon wafer. Additionally, using O2/Ar/H2 plasmas to simulate the low Earth orbit (LEO) environment, it is demonstrated that the simulated plasma had very weak influence on the hBNNS surface structure and thickness. These results validate the strong potential of BNNS films for applications as protective, thermally conductive and insulating layers for spacecrafts, electric plasma satellite thrusters and semiconductor optoelectronic devices.

13.
J Hazard Mater ; 440: 129773, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35988494

RESUMO

Environmental behavior and ecotoxicity of microplastics (MPs) are significantly influenced by the omnipresent self-assembly of microbial extracellular polymeric substances (EPS) on them. However, mechanisms of EPS self-assembly onto MPs at nanoscale resolution and effects of aging are unclear. For the first time, temporospatial nano-heterogeneity of self-assembly of EPS onto fresh and one-year aged polypropylene (PP) MPs were investigated by atomic-force-microscopy-infrared-spectroscopy (AFM-IR). Natural aging caused high degree nanoscale fragmentation of MPs physically and chemically. Self-assembly of EPS on MPs was aging-dependent. Polysaccharides were assembled on MP surface faster than proteins. Initially, regardless of the fresh or aged MPs, polysaccharides and proteins, with the former being predominant, were successively and separately assembled to different nanospaces because of their competition for binding sites. More and more proteins and polysaccharides were superimposed on each other with assembly time due to intermolecular forces. The nanochemical textural analysis showed that the nano-heterogeneity of EPS assembly to MPs was clearly correlated with the aging-induced nanochemical and nanomechanical heterogeneity of MP surface. The spontaneous self-assembly of EPS with temporospatial nano-heterogeneity on MPs have multiple impacts on behavior, ecotoxicity and fate of MPs and their associated pollutants as well as other key ecological processes in aquatic environment.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Poluentes Ambientais/análise , Matriz Extracelular de Substâncias Poliméricas/química , Microplásticos/toxicidade , Plásticos , Polipropilenos , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
14.
Sensors (Basel) ; 22(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35898086

RESUMO

Phase retrieval wavefront sensing methods are now of importance for imaging quality maintenance of space telescopes. However, their accuracy is susceptible to line-of-sight jitter due to the micro-vibration of the platform, which changes the intensity distribution of the image. The effect of the jitter shows some stochastic properties and it is hard to present an analytic solution to this problem. This paper establishes a framework for jitter-robust image-based wavefront sensing algorithm, which utilizes two-dimensional Gaussian convolution to describe the effect of jitter on an image. On this basis, two classes of jitter-robust phase retrieval algorithms are proposed, which can be categorized into iterative-transform algorithms and parametric algorithms, respectively. Further discussions are presented for the cases where the magnitude of jitter is unknown to us. Detailed simulations and a real experiment are performed to demonstrate the effectiveness and practicality of the proposed approaches. This work improves the accuracy and practicality of the phase retrieval wavefront sensing methods in the space condition with non-ignorable micro-vibration.

15.
Biosens Bioelectron ; 213: 114478, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35732084

RESUMO

The identification and detection of biomarkers in cancer cells play an essential role in the early detection of diseases, especially the detection of dual-biomarker. However, one of the most important limiting factors is how to realize the identification and labeling of biomarkers dynamically from the plasma membrane to the cytoplasm in living cells. In this study, integrated DNA triangular prism nanomachines (IDTPNs), a two-stage identification and dynamic bio-imaging strategy, recognize biomarkers from the plasma membrane to the cytoplasm have been designed. DNA triangular prism (DTP) was selected to act as a delivery platform with the aptamer Sgc8c and P53 modified on the side as the recognition molecules. Through the specific recognition of aptamers and the superior internalization of DTP, the IDTPNs realize the dynamic responses to PTK7 and p53 from the membrane to the cytoplasm in living cells. It is proved that the IDTPNs can be used for dynamic dual-biomarker recognition and bio-image from the surface to the inside of tumor cells automatically. Therefore, the strategy we developed provides a reliable platform for tumor diagnosis and biomarker research.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Aptâmeros de Nucleotídeos/metabolismo , Biomarcadores , Linhagem Celular Tumoral , DNA , Proteína Supressora de Tumor p53/genética
16.
Opt Express ; 29(15): 24446-24465, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34614690

RESUMO

Space-based optical astronomical telescopes are susceptible to mirror misalignments due to space disturbance in mechanics and temperature. Therefore, it is of great importance to actively align the telescope in orbit to continuously maintain imaging quality. Traditional active alignment methods usually need additional delicate wavefront sensors and complicated operations (such as instrument calibration and pointing adjustment). This paper proposes a novel active alignment approach by matching the geometrical features of several stellar images at arbitrary multiple field positions. Based on nodal aberration theory and Fourier optics, the relationship between stellar image intensity distribution and misalignments of the system can be modeled for an arbitrary field position. On this basis, an objective function is established by matching the geometrical features of the collected multi-field stellar images and modeled multi-field stellar images, and misalignments can then be solved through nonlinear optimization. Detailed simulations and a real experiment are performed to demonstrate the effectiveness and practicality of the proposed approach. This approach eliminates the need for delicate wavefront sensors and pointing adjustment, which greatly facilitates the maintainance of imaging quality.

17.
Opt Express ; 29(16): 25960-25978, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34614912

RESUMO

Segmented primary mirror provides many crucial important advantages for the construction of extra-large space telescopes. The imaging quality of this class of telescope is susceptible to phasing error between primary mirror segments. Deep learning has been widely applied in the field of optical imaging and wavefront sensing, including phasing segmented mirrors. Compared to other image-based phasing techniques, such as phase retrieval and phase diversity, deep learning has the advantage of high efficiency and free of stagnation problem. However, at present deep learning methods are mainly applied to coarse phasing and used to estimate piston error between segments. In this paper, deep Bi-GRU neural work is introduced to fine phasing of segmented mirrors, which not only has a much simpler structure than CNN or LSTM network, but also can effectively solve the gradient vanishing problem in training due to long term dependencies. By incorporating phasing errors (piston and tip-tilt errors), some low-order aberrations as well as other practical considerations, Bi-GRU neural work can effectively be used for fine phasing of segmented mirrors. Simulations and real experiments are used to demonstrate the accuracy and effectiveness of the proposed methods.

18.
Appl Opt ; 60(21): 6199-6212, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34613286

RESUMO

This paper discusses compensation strategies for the aberration fields caused by the error in the radius of curvature (ROC) of the primary mirror (PM) in pupil-offset off-axis three-mirror anastigmatic (TMA) astronomical telescopes. Based on the nodal aberration theory framework, the specific astigmatic and coma aberrations of the off-axis three-mirror system in the presence of the ROC error of the PM are derived. It is demonstrated that some field-dependent aberration components can be induced by ROC error in the off-axis TMA telescopes, apart from the dominating field-constant aberration terms. To reduce the influence of the ROC error on the aberration fields, we propose two aberration compensation strategies: adjusting the position of the PM and introducing axial misalignment of the secondary mirror (SM). Through theoretical analysis and simulations, we conclude that the compensation strategy of changing the axial position of the PM can make the aberration distribution close to the nominal state; the compensation strategy of axially adjusting the SM can make the aberration distribution meet the observation requirements, which is more suitable for space applications. We also discuss compensating the effect of the ROC error using lateral misalignments.

19.
Molecules ; 26(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34279431

RESUMO

Plasma-enhanced synthesis and modification of polymers is a field that continues to expand and become increasingly more sophisticated. The highly reactive processing environments afforded by the inherently dynamic nature of plasma media are often superior to ambient or thermal environments, offering substantial advantages over other processing methods. The fluxes of energy and matter toward the surface enable rapid and efficient processing, whereas the charged nature of plasma-generated particles provides a means for their control. The range of materials that can be treated by plasmas is incredibly broad, spanning pure polymers, polymer-metal, polymer-wood, polymer-nanocarbon composites, and others. In this review, we briefly outline some of the recent examples of the state-of-the-art in the plasma-based polymer treatment and functionalization techniques.

20.
Phys Chem Chem Phys ; 23(25): 13797-13807, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34075962

RESUMO

Heterostructural engineering and noble metal coupling are effective strategies to optimize semiconductor photocatalytic materials. In this work, (Ag, Mn2O3)-codecorated ZnO nanoparticles with different Mn2O3 contents (0-10 mol%) were synthesized by integrating the two strategies by a facile two-step polymer network-gel process. The photocatalytic activity of Ag/ZnO (AZM0) was significantly enhanced with the optimum Mn2O3 molar ratio of 3 mol%. The degradation efficiency of AZM3 is ∼3 times and ∼4.8 times higher than that of AZM0 for the degradation of methylene blue (MB) upon exposure to simulated sunlight and visible light, respectively. Also, this ternary nanocomposite exhibits enhanced gas sensing performance towards NO2 under ultraviolet/visible light irradiation at room temperature. The analysis of its microstructural, optical and photoelectrical characteristics suggests the synergistic coupling effects of Ag and Mn2O3, in which the significantly enhanced visible light response and hetero-interface charge carrier migration are the critical factors for the improvement of photocatalytic efficiency and gas sensing activity. Furthermore, the effects of recycling ability, the influence of the initial solution pH, the catalyst dosage and the main active species during the catalysis process on photocatalytic activity were explored. This study develops a feasible pathway to consciously construct multiheterostructures for enhancing the photocatalytic activity with great potential applications in toxic pollution abatement and noxious gas detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...