Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 18: 1391556, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841203

RESUMO

Bone morphogenetic protein-4 (BMP4) is involved in regulation of neural stem cells (NSCs) proliferation, differentiation, migration and survival. It was previously thought that the treatment of NSCs with BMP4 alone induces astrocytes, whereas the treatment of NSCs with the bFGF/BMP4 combination induces quiescent neural stem cells (qNSCs). In this study, we performed bulk RNA sequencing (RNA-Seq) to compare the transcriptome profiles of BMP4-treated NSCs and bFGF/BMP4-treated NSCs, and found that both NSCs treated by these two methods were Sox2 positive qNSCs which were able to generate neurospheres. However, NSCs treated by those two methods exhibited different characteristics in state and the potential for neuronal differentiation based on transcriptome analysis and experimental results. We found that BMP4-treated NSCs tended to be in a deeper quiescent state than bFGF/BMP4-treated NSCs as the percentage of ki67-positive cells were lower in BMP4-treated NSCs. And after exposure to differentiated environment, bFGF/BMP4-treated NSCs generated more DCX-positive immature neurons and MAP2-positive neurons than BMP4-treated NSCs. Our study characterized qNSCs treated with BMP4 alone and bFGF/BMP4 combination, providing a reference for the scientific use of BMP4 and bFGF/BMP4-induced qNSCs models.

2.
BMC Med Genomics ; 16(1): 53, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36915078

RESUMO

Alzheimer's disease (AD) is the most prevalent cause of dementia and is primarily associated with memory impairment and cognitive decline, but the etiology of AD has not been elucidated. In recent years, evidence has shown that immune cells play critical roles in AD pathology. In the current study, we collected the transcriptomic data of the hippocampus from gene expression omnibus database, and investigated the effect of immune cell infiltration in the hippocampus on AD, and analyzed the key genes that influence the pathogenesis of AD patients. The results revealed that the relative abundance of immune cells in the hippocampus of AD patients was altered. Of all given 28 kinds of immune cells, monocytes were the important immune cell associated with AD. We identified 4 key genes associated with both AD and monocytes, including KDELR1, SPTAN1, CDC16 and RBBP6, and they differentially expressed in 5XFAD mice and WT mice. The logistic regression and random forest models based on the 4 key genes could effectively distinguish AD from healthy samples. Our research provided a new perspective on immunotherapy for AD patients.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Camundongos , Animais , Doença de Alzheimer/metabolismo , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Perfilação da Expressão Gênica , Disfunção Cognitiva/patologia , Hipocampo/metabolismo , Modelos Animais de Doenças , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo
3.
NPJ Parkinsons Dis ; 9(1): 13, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720890

RESUMO

Exercise has been proposed as an effective non-pharmacological management for Parkinson's disease (PD) patients. Irisin, a recently identified myokine, is increased by exercise and plays pivotal roles in energy metabolism. However, it remains unknown whether irisin has any protective effects on PD. Here, we found that serum irisin levels of PD patients were markedly elevated after 12-week regular exercise, which had a positive correlation with improved balance function scored by Berg Balance Scale. Treatment with exogenous irisin could improve motor function, and reduce dopaminergic neurodegeneration in PD models. Meanwhile, irisin could reduce cell apoptosis by renovating mitochondrial function in PD models, which was reflected in decreased oxidative stress, increased mitochondrial complex I activity and mitochondrial content, increased mitochondrial biogenesis, and repaired mitochondrial morphology. Furthermore, irisin regulated the aforementioned aspects by upregulating downstream Akt signaling pathway and ERK1/2 signaling pathway through integrin receptors rather than directly targeting mitochondria. With the use of small-molecule inhibitors, it was found that irisin can reduce apoptosis, restore normal mitochondrial biogenesis, and improve mitochondrial morphology and dynamic balance in PD models by activating Akt signaling pathway and ERK1/2 signaling pathway. And irisin reduced oxidative stress via activating ERK1/2 signaling pathway. The results revealed that exogenous irisin conferred neuroprotection relieving apoptosis and oxidative stress, restraining mitochondrial fragmentation, and promoting mitochondrial respiration and biogenesis in PD models, and irisin exerted the aforementioned effects by activating Akt signaling pathway and ERK1/2 signaling pathway. Thus, peripherally delivered irisin might be a promising candidate for therapeutic targeting of PD.

4.
Int J Med Sci ; 19(1): 112-125, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34975305

RESUMO

Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by cognitive impairment and memory loss, for which there is no effective cure to date. In the past several years, numerous studies have shown that increased inflammation in AD is a major cause of cognitive impairment. This study aimed to reveal 22 kinds of peripheral immune cell types and key genes associated with AD. The prefrontal cortex transcriptomic data from Gene Expression Omnibus (GEO) database were collected, and CIBERSORT was used to assess the composition of 22 kinds of immune cells in all samples. Weighted gene co-expression network analysis (WGCNA) was used to construct gene co-expression networks and identified candidate module genes associated with AD. The least absolute shrinkage and selection operator (LASSO) and random forest (RF) models were constructed to analyze candidate module genes, which were selected from the result of WGCNA. The results showed that the immune infiltration in the prefrontal cortex of AD patients was different from healthy samples. Of all 22 kinds of immune cells, M1 macrophages were the most relevant cell type to AD. We revealed 10 key genes associated with AD and M1 macrophages by LASSO and RF analysis, including ARMCX5, EDN3, GPR174, MRPL23, RAET1E, ROD1, TRAF1, WNT7B, OR4K2 and ZNF543. We verified these 10 genes by logistic regression and k-fold cross-validation. We also validated the key genes in an independent dataset, and found GPR174, TRAF1, ROD1, RAET1E, OR4K2, MRPL23, ARMCX5 and EDN3 were significantly different between the AD and healthy controls. Moreover, in the 5XFAD transgenic mice, the differential expression trends of Wnt7b, Gpr174, Ptbp3, Mrpl23, Armcx5 and Raet1e are consistent with them in independent dataset. Our results provided potential therapeutic targets for AD patients.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Córtex Pré-Frontal/imunologia , Animais , Feminino , Expressão Gênica , Proteínas Hedgehog/metabolismo , Humanos , Transporte de Íons , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/metabolismo
5.
Front Cell Dev Biol ; 9: 688789, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513831

RESUMO

Mitochondria, the centers of energy metabolism, have been shown to participate in epigenetic regulation of neurodegenerative diseases. Epigenetic modification of nuclear genes encoding mitochondrial proteins has an impact on mitochondria homeostasis, including mitochondrial biogenesis, and quality, which plays role in the pathogenesis of neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. On the other hand, intermediate metabolites regulated by mitochondria such as acetyl-CoA and NAD+, in turn, may regulate nuclear epigenome as the substrate for acetylation and a cofactor of deacetylation, respectively. Thus, mitochondria are involved in epigenetic regulation through bidirectional communication between mitochondria and nuclear, which may provide a new strategy for neurodegenerative diseases treatment. In addition, emerging evidence has suggested that the abnormal modification of mitochondria DNA contributes to disease development through mitochondria dysfunction. In this review, we provide an overview of how mitochondria are involved in epigenetic regulation and discuss the mechanisms of mitochondria in regulation of neurodegenerative diseases from epigenetic perspective.

6.
Front Aging Neurosci ; 13: 605970, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33633562

RESUMO

Parkinson's disease (PD) is an age-related and second most common neurodegenerative disorder. In recent years, increasing evidence revealed that peripheral immune cells might be able to infiltrate into brain tissues, which could arouse neuroinflammation and aggravate neurodegeneration. This study aimed to illuminate the landscape of peripheral immune cells and signature genes associated with immune infiltration in PD. Several transcriptomic datasets of substantia nigra (SN) from the Gene Expression Omnibus (GEO) database were separately collected as training cohort, testing cohort, and external validation cohort. The immunoscore of each sample calculated by single-sample gene set enrichment analysis was used to reflect the peripheral immune cell infiltration and to identify the differential immune cell types between PD and healthy participants. According to receiver operating characteristic (ROC) curve analysis, the immunoscore achieved an overall accuracy of the area under the curve (AUC) = 0.883 in the testing cohort, respectively. The immunoscore displayed good performance in the external validation cohort with an AUC of 0.745. The correlation analysis and logistic regression analysis were used to analyze the correlation between immune cells and PD, and mast cell was identified most associated with the occurrence of PD. Additionally, increased mast cells were also observed in our in vivo PD model. Weighted gene co-expression network analysis (WGCNA) was used to selected module genes related to a mast cell. The least absolute shrinkage and selection operator (LASSO) analysis and random-forest analysis were used to analyze module genes, and two hub genes RBM3 and AGTR1 were identified as associated with mast cells in the training cohort. The expression levels of RBM3 and AGTR1 in these cohorts and PD models revealed that these hub genes were significantly downregulated in PD. Moreover, the expression trend of the aforementioned two genes differed in mast cells and dopaminergic (DA) neurons. In conclusion, this study not only exhibited a landscape of immune infiltrating patterns in PD but also identified mast cells and two hub genes associated with the occurrence of PD, which provided potential therapeutic targets for PD patients (PDs).

7.
J Dairy Res ; 87(2): 170-174, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32482199

RESUMO

In this research communication we describe the DGAT1 sequence and promoter region in dairy cows and buffalo and compare the activities of DGAT1 between the two species in order to increase knowledge of the cause of milk fat variation. pGL-3 basic vectors were used to construct the reporter gene. Based on the predicted promoter region, 4 truncated plasmid vectors were constructed in cow-DGAT1 and 3 plasmid vectors in buffalo-DGAT1. Each reporter plasmid was transfected into the bovine mammary epithelial cell (BMEC), 293T cell, and CHO cells to analyze the activity using Dual-Luciferase Reporter Assay System. The results show that the region between -93 to -556 bp was essential for cow promoter activity while -84 to -590 bp was essential for buffalo promoter activity revealing these regions contain core promoter. The buffalo has higher promoter activity than cow yet it was not statistically significant. Comparison of candidate mutation K232A between cow and buffalo population revealed the presence of both the allelic population in dairy cows (lysine and alanine) however, only K (lysine) allelic amino acid was found in buffalo population. The absence of the alanine allelic population from buffalo explains the higher fat content of buffalo milk.


Assuntos
Búfalos/genética , Bovinos/genética , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Lipídeos/biossíntese , Leite/metabolismo , Animais , Células CHO , Cricetulus , Células Epiteliais/enzimologia , Feminino , Células HEK293 , Humanos , Lipídeos/análise , Glândulas Mamárias Animais/enzimologia , Leite/química , Regiões Promotoras Genéticas/genética , Especificidade da Espécie , Transfecção
8.
BMC Genet ; 19(1): 110, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30526478

RESUMO

BACKGROUND: In our previous genome-wide association study (GWAS) on the piglet splay leg (PSL) syndrome, the homer scaffolding protein 1 (HOMER1) was detected as a candidate gene. The aim of this work was to further verify the candidate gene by sequencing the gene and find the significantly associated mutation. Then we preliminarily analyzed the effect of the significant SNP on intronic promoter activity. This research provided a reference for further investigation of the pathogenesis of PSL. RESULT: We investigated the 19 SNPs on HOMER1 and found 12 SNPs significant associated with PSL, including 8 SNPs resided in the potential intronic promoter region in intron 4. The - 663~ - 276 bp upstream the exon 5 had promoter activity and it could be an intronic promoter that regulated the transcription of HOMER1-205 transcript. The promoter activity of the - 663~ - 276 bp containing the rs339135425 and rs325197091 mutant alleles was significantly higher than of the wild type (P < 0.05). The G allele of rs325197091 (A > G) may create a new binding site of transcription factor aryl hydrocarbon receptor nuclear translocator (ARNT) and could enhance HOMER1 intronic promoter activity. CONCLUSIONS: HOMER1 gene was associated with the PSL, and the rs325197091 could influence HOMER1 intronic promoter activity in vitro.


Assuntos
Proteínas de Arcabouço Homer/genética , Polimorfismo de Nucleotídeo Único , Doenças dos Suínos/genética , Regiões 5' não Traduzidas , Alelos , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/antagonistas & inibidores , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Sítios de Ligação , Linhagem Celular , Estudo de Associação Genômica Ampla , Genótipo , Proteínas de Arcabouço Homer/metabolismo , Íntrons , Desequilíbrio de Ligação , Regiões Promotoras Genéticas , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Suínos , Doenças dos Suínos/patologia
9.
BMC Genet ; 18(1): 64, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28679362

RESUMO

BACKGROUND: Piglet splay leg syndrome (PSL) is one of the most frequent genetic defects, and can cause considerable economic loss in pig production. The present understanding of etiology and pathogenesis of PSL is poor. The current study focused on identifying loci associated with PSL through a genome-wide association study (GWAS) performed with the Illumina Porcine60 SNP Beadchip v2.0. The study was a case/control design with four pig populations (Duroc, Landrace, Yorkshire and one crossbred of Landrace × Yorkshire). RESULT: After quality control of the genotyping data, 185 animals (73 cases, 112 controls) and 43,495 SNPs were retained for further analysis. Principal components (PCs) identified from the genomic kinship matrix were included in the statistical model for correcting the effect of population structure. Seven chromosome-wide significant SNPs were identified on Sus scrofa chromosome 1 (SSC1), SSC2 (2 SNPs), SSC7, SSC15 (2 SNPs) and SSC16 after strict Bonferroni correction. Four genes (HOMER1 and JMY on SSC2, ITGA1 on SSC16, and RAB32 on SSC1) related to muscle development, glycogen metabolism and mitochondrial dynamics were identified as potential candidate genes for PSL. CONCLUSIONS: We identified seven chromosome-wide significant SNPs associated with PSL and four potential candidate genes for PSL. To our knowledge, this is the first pilot study aiming to identify the loci associated with PSL using GWAS. Further investigations and validations for those findings are encouraged.


Assuntos
Marcadores Genéticos , Estudo de Associação Genômica Ampla , Membro Posterior/anormalidades , Deformidades Congênitas dos Membros/veterinária , Sus scrofa/anormalidades , Animais , Animais Recém-Nascidos , Genótipo , Deformidades Congênitas dos Membros/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Polimorfismo de Nucleotídeo Único , Suínos , Doenças dos Suínos/genética , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA