Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 120(5): 791-804, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33513336

RESUMO

Microfluidics in vitro assays recapitulate a blood vessel microenvironment using surface-immobilized agonists under biofluidic flows. However, these assays do not quantify intrathrombus mass and activities of adhesive platelets at the agonist margin and use fluorescence labeling, therefore limiting clinical translation potential. Here, we describe a label-free multimodal quantitative imaging flow assay that combines rotating optical coherent scattering microscopy and quantitative phase microscopy. The combined imaging platform enables real-time evaluation of membrane fluctuations of adhesive-only platelets and total intrathrombus mass under physiological flow rates in vitro. We call this multimodal quantitative imaging flow assay coherent optical scattering and phase interferometry (COSI). COSI records intrathrombus mass to picogram accuracy and shape changes to a platelet membrane with high spatial-temporal resolution (0.4 µm/s) under physiological and pathophysiological fluid shear stress (1800 and 7500 s-1). With COSI, we generate an axial slice of 4 µm from the coverslip surface, approximately equivalent to the thickness of a single platelet, which permits nanoscale quantification of membrane fluctuation (activity) of adhesive platelets during initial adhesion, spreading, and recruitment into a developing thrombus (mass). Under fluid shear, pretreatment with a broad range metalloproteinase inhibitor (250 µM GM6001) blocked shedding of platelet adhesion receptors that shown elevated adhesive platelet activity at average of 42.1 µm/s and minimal change in intrathrombus mass.


Assuntos
Adesividade Plaquetária , Trombose , Plaquetas , Humanos , Microfluídica , Estresse Mecânico
2.
Biomed Opt Express ; 11(10): 5478-5487, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33149965

RESUMO

Intensity shot noise in digital holograms distorts the quality of the phase images after phase retrieval, limiting the usefulness of quantitative phase microscopy (QPM) systems in long term live cell imaging. In this paper, we devise a hologram-to-hologram neural network, Holo-UNet, that restores high quality digital holograms under high shot noise conditions (sub-mW/cm2 intensities) at high acquisition rates (sub-milliseconds). In comparison to current phase recovery methods, Holo-UNet denoises the recorded hologram, and so prevents shot noise from propagating through the phase retrieval step that in turn adversely affects phase and intensity images. Holo-UNet was tested on 2 independent QPM systems without any adjustment to the hardware setting. In both cases, Holo-UNet outperformed existing phase recovery and block-matching techniques by ∼ 1.8 folds in phase fidelity as measured by SSIM. Holo-UNet is immediately applicable to a wide range of other high-speed interferometric phase imaging techniques. The network paves the way towards the expansion of high-speed low light QPM biological imaging with minimal dependence on hardware constraints.

3.
Lab Chip ; 20(21): 3960-3969, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32940306

RESUMO

Moldable, transparent polydimethylsiloxane (PDMS) elastomer microdevices enable a broad range of complex studies of three-dimensional cellular networks in their microenvironment in vitro. However, the uneven distribution of refractive index change, external to PDMS devices and internally in the sample chamber, creates a significant optical path difference (OPD) that distorts the light sheet beam and so restricts diffraction limited performance. We experimentally showed that an OPD of 120 µm results in the broadening of the lateral point spread function by over 4-fold. In this paper, we demonstrate steps to adapt a commercial inverted selective plane illumination microscope (iSPIM) and remove the OPD so as to achieve sub-micrometer imaging ranging from 0.6 ± 0.04 µm to 0.91 ± 0.03 µm of a fluorescence biological sample suspended in regular saline (RI ≈1.34) enclosed in 1.2 to 2 mm thick micromolded PDMS microdevices. We have proven that the removal of the OPD from the external PDMS layer by refractive index (RI) matching with a readily accessible, inexpensive sucrose solution is critical to achieve a >3-fold imaging resolution improvement. To monitor the RI matching process, a single-mode fiber (SMF) illuminator was integrated into the iSPIM. To remove the OPD inside the PDMS channel, we used an electrically tunable lens (ETL) that par-focuses the light sheet beam with the detection objective lens and so minimised axial distortions to attain sub-micrometer imaging resolution. We termed this new light sheet imaging protocol as modified inverted selective plane illumination microscopy (m-iSPIM). Using the high spatial-temporal 3D imaging of m-iSPIM, we experimentally captured single platelet (≈2 µm) recruitment to a platelet aggregate (22.5 µm × 22.5 µm × 6 µm) under flow at a 150 µm depth within a microfluidic channel. m-iSPIM paves the way for the application of light sheet imaging to a wide range of 3D biological models in microfluidic devices which recapitulate features of the physiological microenvironment and elucidate subcellular responses.


Assuntos
Lentes , Microscopia , Dimetilpolisiloxanos , Dispositivos Lab-On-A-Chip , Iluminação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...