Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 275: 116565, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38878518

RESUMO

Transient receptor potential canonical 5 (TRPC5) is a calcium-permeable non-selective cation channel involved in various pathophysiological processes, including renal injury. Recently, GFB-887, an investigational pyridazinone TRPC5 inhibitor, demonstrated significant therapeutic potential in a Phase II clinical trial for focal segmental glomerulosclerosis (FSGS), a rare and severe form of chronic kidney disease (CKD). In the current study, based on the structure of GFB-887, we conducted extensive structural modification to explore novel TRPC5 inhibitors with desirable drug-like properties and robust nephroprotective efficacy. A series of pyridazinone derivatives featuring a novel tetrahydroimidazo[1,2-a]pyrazine scaffold were synthesized and their activities were evaluated in HEK-293 cells stably expressing TRPC5 using a fluorescence-based Ca2+ mobilization assay. Among these compounds, compound 12 is turned out to be a potent TRPC5 inhibitor with apparent affinity comparable to the parent compound GBF-887. Compound 12 is highly selective on TRPC4/5 over TRPC3/6/7 and hERG channels, along with acceptable pharmacokinetic properties and a favorable safety profile. More importantly, in a rat model of hypertension-induced renal injury, oral administration of compound 12 (10 mg/kg, BID) efficaciously reduced mean blood pressure, inhibited proteinuria, and protected podocyte damage. These findings further confirmed the potential of TRPC5 inhibitors on the CKD treatment and provided compound 12 to be a valuable tool for exploring TRPC4/5 pathophysiology.


Assuntos
Hipertensão , Pirazinas , Canais de Cátion TRPC , Animais , Humanos , Ratos , Pirazinas/química , Pirazinas/farmacologia , Pirazinas/síntese química , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPC/metabolismo , Células HEK293 , Relação Estrutura-Atividade , Masculino , Hipertensão/tratamento farmacológico , Descoberta de Drogas , Estrutura Molecular , Piridazinas/farmacologia , Piridazinas/química , Piridazinas/síntese química , Relação Dose-Resposta a Droga , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/química , Anti-Hipertensivos/síntese química , Ratos Sprague-Dawley , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/síntese química
2.
J Med Chem ; 66(12): 7988-8010, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37286364

RESUMO

Danuglipron is the most representative small-molecule agonist of the glucagon-like peptide-1 receptor (GLP-1R) and has received considerable attention due to positive results in the treatment of type 2 diabetes mellitus (T2DM) and obesity in clinical trials. However, hERG inhibition, lower activity than endogenous GLP-1, and a short action time represent limitations in terms of feasible application. In this study, we report a new class of 5,6-dihydro-1,2,4-triazine derivatives that serve to eliminate potential hERG inhibition caused by the piperidine ring of danuglipron. Applying systematic in vitro to in vivo screening, we have identified compound 42 as a highly potent and selective GLP-1R agonist, which delivers improved (7-fold) efficacy in stimulating cAMP accumulation compared with danuglipron and which exhibits acceptable drug-like properties. Furthermore, 42 significantly reduces glucose excursion and inhibits food intake of hGLP-1R Knock-In mice. These effects are longer-lasting than that shown by danuglipron, demonstrating feasibility in the treatment of T2DM and obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Camundongos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Obesidade/tratamento farmacológico
3.
Eur J Med Chem ; 246: 114994, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36493615

RESUMO

Phenotypic screening still plays an important role in discovering new drugs, especially for diseases with complex pathogenesis, such as diabetes. As excessive gluconeogenesis is considered an important factor in the occurrence of hyperglycemia in T2DM, we previously screened our compounds library for active molecules which inhibit gluconeogenesis, resulting in the discovery of SL010110 with a unique mechanism, different from metformin and a thienopyridine derivative (DMT). The SARs study of SL010110 led to the discovery of 10v. Compared with SL010110, 10v showed improved anti-gluconeogenesis potency and pyruvate tolerance. A further pharmacokinetic study demonstrated that 10v displayed a relatively short half-life, moderate volume of distribution, and moderate to high oral bioavailability. In vivo chronic experiments showed an improved capability of 10v in ameliorating hyperglycemia as the 5 mg/kg 10v treatment greatly reduced non-fasting and fasting blood glucose levels, making it a promising candidate for the treatment of T2DM. The progression from in vitro screening to in vivo testing of the derivatized compounds provided a useful phenotypic screening drug discovery strategy based on the inhibition of gluconeogenesis.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Humanos , Glicemia/metabolismo , Ácidos Carboxílicos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Descoberta de Drogas , Gluconeogênese , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/metabolismo , Fígado/metabolismo , Compostos Orgânicos/uso terapêutico
4.
Acta Pharmacol Sin ; 44(3): 596-609, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36085523

RESUMO

Promotion of hepatic glycogen synthesis and inhibition of hepatic glucose production are effective strategies for controlling hyperglycemia in type 2 diabetes mellitus (T2DM), but agents with both properties were limited. Herein we report coronarin A, a natural compound isolated from rhizomes of Hedychium gardnerianum, which simultaneously stimulates glycogen synthesis and suppresses gluconeogenesis in rat primary hepatocytes. We showed that coronarin A (3, 10 µM) dose-dependently stimulated glycogen synthesis accompanied by increased Akt and GSK3ß phosphorylation in rat primary hepatocytes. Pretreatment with Akt inhibitor MK-2206 (2 µM) or PI3K inhibitor LY294002 (10 µM) blocked coronarin A-induced glycogen synthesis. Meanwhile, coronarin A (10 µM) significantly suppressed gluconeogenesis accompanied by increased phosphorylation of MEK, ERK1/2, ß-catenin and increased the gene expression of TCF7L2 in rat primary hepatocytes. Pretreatment with ß-catenin inhibitor IWR-1-endo (10 µM) or ERK inhibitor SCH772984 (1 µM) abolished the coronarin A-suppressed gluconeogenesis. More importantly, we revealed that coronarin A activated PI3K/Akt/GSK3ß and ERK/Wnt/ß-catenin signaling via regulation of a key upstream molecule IRS1. Coronarin A (10, 30 µM) decreased the phosphorylation of mTOR and S6K1, the downstream target of mTORC1, which further inhibited the serine phosphorylation of IRS1, and subsequently increased the tyrosine phosphorylation of IRS1. In type 2 diabetic ob/ob mice, chronic administration of coronarin A significantly reduced the non-fasting and fasting blood glucose levels and improved glucose tolerance, accompanied by the inhibited hepatic mTOR/S6K1 signaling and activated IRS1 along with enhanced PI3K/Akt/GSK3ß and ERK/Wnt/ß-catenin pathways. These results demonstrate the anti-hyperglycemic effect of coronarin A with a novel mechanism by inhibiting mTORC1/S6K1 to increase IRS1 activity, and highlighted coronarin A as a valuable lead compound for the treatment of T2DM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Camundongos , Ratos , Animais , Gluconeogênese , Glicogênio Hepático/metabolismo , beta Catenina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Insulina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Glucose/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Homeostase , Fosforilação
5.
Acta Pharmacol Sin ; 42(11): 1834-1846, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574568

RESUMO

Suppression of excessive hepatic gluconeogenesis is an effective strategy for controlling hyperglycemia in type 2 diabetes (T2D). In the present study, we screened our compounds library to discover the active molecules inhibiting gluconeogenesis in primary mouse hepatocytes. We found that SL010110 (5-((4-allyl-2-methoxyphenoxy) methyl) furan-2-carboxylic acid) potently inhibited gluconeogenesis with 3 µM and 10 µM leading to a reduction of 45.5% and 67.5%, respectively. Moreover, SL010110 caused suppression of gluconeogenesis resulted from downregulating the protein level of phosphoenolpyruvate carboxykinase 1 (PEPCK1), but not from affecting the gene expressions of PEPCK, glucose-6-phosphatase, and fructose-1,6-bisphosphatase. Furthermore, SL010110 increased PEPCK1 acetylation, and promoted PEPCK1 ubiquitination and degradation. SL010110 activated p300 acetyltransferase activity in primary mouse hepatocytes. The enhanced PEPCK1 acetylation and suppressed gluconeogenesis caused by SL010110 were blocked by C646, a histone acetyltransferase p300 inhibitor, suggested that SL010110 inhibited gluconeogenesis by activating p300. SL010110 decreased NAD+/NADH ratio, inhibited SIRT2 activity, and further promoted p300 acetyltransferase activation and PEPCK1 acetylation. These effects were blocked by NMN, an NAD+ precursor, suggested that SL010110 inhibited gluconeogenesis by inhibiting SIRT2, activating p300, and subsequently promoting PEPCK1 acetylation. In type 2 diabetic ob/ob mice, single oral dose of SL010110 (100 mg/kg) suppressed gluconeogenesis accompanied by the suppressed hepatic SIRT2 activity, increased p300 activity, enhanced PEPCK1 acetylation and degradation. Chronic oral administration of SL010110 (15 or 50 mg/kg) significantly reduced the blood glucose levels in ob/ob and db/db mice. This study reveals that SL010110 is a lead compound with a distinct mechanism of suppressing gluconeogenesis via SIRT2-p300-mediated PEPCK1 degradation and potent anti-hyperglycemic activity for the treatment of T2D.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Gluconeogênese/efeitos dos fármacos , Glucose/metabolismo , Hipoglicemiantes/uso terapêutico , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Sirtuína 2/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Relação Dose-Resposta a Droga , Gluconeogênese/fisiologia , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Camundongos Transgênicos , Fosfoenolpiruvato Carboxiquinase (GTP)/antagonistas & inibidores , Proteólise/efeitos dos fármacos , Sirtuína 2/antagonistas & inibidores
6.
Front Pharmacol ; 9: 476, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867482

RESUMO

The role of phosphodiesterase 3 (PDE3), a cyclic AMP (cAMP)-degrading enzyme, in modulating gluconeogenesis remains unknown. Here, linderane, a natural compound, was found to inhibit gluconeogenesis by activating hepatic PDE3 in rat primary hepatocytes. The underlying molecular mechanism and its effects on whole-body glucose and lipid metabolism were investigated. The effect of linderane on gluconeogenesis, cAMP content, phosphorylation of cAMP-response element-binding protein (CREB) and PDE activity were examined in cultured primary hepatocytes and C57BL/6J mice. The precise mechanism by which linderane activates PDE3 and inhibits the cAMP pathway was explored using pharmacological inhibitors. The amelioration of metabolic disorders was observed in ob/ob mice. Linderane inhibited gluconeogenesis, reduced phosphoenolpyruvate carboxykinase (Pck1) and glucose-6-phosphatase (G6pc) gene expression, and decreased intracellular cAMP concentration and CREB phosphorylation in rat primary hepatocytes under both basal and forskolin-stimulated conditions. In rat primary hepatocytes, it also increased total PDE and PDE3 activity but not PDE4 activity. The suppressive effect of linderane on the cAMP pathway and gluconeogenesis was abolished by the non-specific PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX) and the specific PDE3 inhibitor cilostazol. Linderane indirectly activated PDE3 through extracellular regulated protein kinase 1/2 (ERK1/2) and signal transducer and activator of transcription 3 (STAT3) activation. Linderane improved glucose and lipid metabolism after chronic oral administration in ob/ob mice. Our findings revealed linderane as an indirect PDE3 activator that suppresses gluconeogenesis through cAMP pathway inhibition and has beneficial effects on metabolic syndromes in ob/ob mice. This investigation highlighted the potential for PDE3 activation in the treatment of type 2 diabetes.

7.
Bioorg Med Chem ; 17(15): 5722-32, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19574056

RESUMO

PPARgamma and 11beta-HSD1 are attractive therapeutic targets for type 2 diabetes. However, PPARgamma agonists induce adipogenesis, which causes the side effect of weight gain, whereas 11beta-HSD1 inhibitors prevent adipogenesis and may be beneficial for the treatment of obesity in diabetic patients. For the first time, we designed, synthesized a series of alpha-aryloxy-alpha-methylhydrocinnamic acids as dual functional agents which activate PPARgamma and inhibit 11beta-HSD1 simultaneously. The compound 11e exhibited the most potent inhibitory activity compared to that of the lead compound 2, with PPARgamma (EC(50)=6.76 microM) and 11beta-HSD1 (IC(50)=0.76 microM) in vitro. Molecular modeling study for compound 11e was also presented. Compound 11e showed excellent efficacy for lowering glucose, triglycerides, body fat, in well established mice and rats models of diabetes and obesity and had a favorable ADME profile.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Hipolipemiantes/uso terapêutico , Obesidade/tratamento farmacológico , PPAR gama/agonistas , Fenilpropionatos/uso terapêutico , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Gorduras/metabolismo , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/farmacologia , Hipolipemiantes/química , Hipolipemiantes/farmacocinética , Hipolipemiantes/farmacologia , Camundongos , Modelos Moleculares , Obesidade/induzido quimicamente , PPAR gama/metabolismo , Fenilpropionatos/química , Fenilpropionatos/farmacocinética , Fenilpropionatos/farmacologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...