Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36078787

RESUMO

The complexity and uncertainty of compound disasters highlight the significance of local emergency resilience. This paper puts forward a framework, including the Projection Pursuit Model based on Real-coded Accelerating Genetic Algorithm and the Moran's Index (Moran's I), to measure the local emergency resilience and analyze its spatial distribution. An empirical test is conducted with the case of Hubei Province, China. The results show that: (1) the measurement indices related to infrastructure, material reserves, and resource allocation have a larger weight, while those related to personnel and their practice have a smaller weight. (2) The measurement value of local emergency resilience of sub-provincial regions in Hubei Province is vital in the eastern and weak in the western, and there are apparent east-west segmentation and north-south aggregation characteristics. (3) Although the sub-provincial regions do not show significant spatial correlation, the eastern regions centered on Wuhan are negatively correlated, and the western regions are positively correlated. Furthermore, this study provides theories and methods for local emergency resilience evaluation and spatial correlation exploration, and it has specific guidance recommendations for optimizing local emergency management resource allocation and improving local emergency resilience.


Assuntos
Desastres , China , Cidades , Análise Espacial
2.
Sci Adv ; 7(23)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34078600

RESUMO

Strengthening of magnesium (Mg) is known to occur through dislocation accumulation, grain refinement, deformation twinning, and texture control or dislocation pinning by solute atoms or nano-sized precipitates. These modes generate yield strengths comparable to other engineering alloys such as certain grades of aluminum but below that of high-strength aluminum and titanium alloys and steels. Here, we report a spinodal strengthened ultralightweight Mg alloy with specific yield strengths surpassing almost every other engineering alloy. We provide compelling morphological, chemical, structural, and thermodynamic evidence for the spinodal decomposition and show that the lattice mismatch at the diffuse transition region between the spinodal zones and matrix is the dominating factor for enhancing yield strength in this class of alloy.

3.
Nat Commun ; 10(1): 1003, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824695

RESUMO

Body-centred cubic magnesium-lithium-aluminium-base alloys are the lightest of all the structural alloys, with recently developed alloy compositions showing a unique multi-dimensional property profile. By hitherto unrecognised mechanisms, such alloys also exhibit exceptional immediate strengthening after solution treatment and water quenching, but strength eventually decreases during prolonged low temperature ageing. We show that such phenomena are due to the precipitation of semi-coherent D03-Mg3Al nanoparticles during rapid cooling followed by gradual coarsening and subsequent loss of coherency. Physical explanation of these phenomena allowed the creation of an exceptionally low-density alloy that is also structurally stable by controlling the lattice mismatch and volume fraction of the Mg3Al nanoparticles. The outcome is one of highest specific-strength engineering alloys ever developed.

4.
Nat Mater ; 14(12): 1229-35, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26480229

RESUMO

Ultra-lightweight alloys with high strength, ductility and corrosion resistance are desirable for applications in the automotive, aerospace, defence, biomedical, sporting and electronic goods sectors. Ductility and corrosion resistance are generally inversely correlated with strength, making it difficult to optimize all three simultaneously. Here we design an ultralow density (1.4 g cm(-3)) Mg-Li-based alloy that is strong, ductile, and more corrosion resistant than Mg-based alloys reported so far. The alloy is Li-rich and a solute nanostructure within a body-centred cubic matrix is achieved by a series of extrusion, heat-treatment and rolling processes. Corrosion resistance from the environment is believed to occur by a uniform lithium carbonate film in which surface coverage is much greater than in traditional hexagonal close-packed Mg-based alloys, explaining the superior corrosion resistance of the alloy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...