Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Brain Behav Immun ; 121: 13-25, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025414

RESUMO

Alterations in steroid hormone regulation have been implicated in the etiology and progression of autism spectrum disorders (ASD), with the enzyme cytochrome P450 family 11 subfamily A member 1 (CYP11A1)-a key catalyst in cholesterol side-chain cleavage, prominently expressed in the adrenal glands, ovaries, testes, and placenta-standing at the forefront of these investigations. The potential link between aberrations in placental Cyp11a1 expression and the resultant neurodevelopmental disorders, along with the mechanisms underpinning such associations, remains inadequately delineated. In this study, we employed a placental trophoblast-specific Cyp11a1 Hipp11 (H11) knock-in murine model to dissect the phenotypic manifestations within the placenta and progeny, thereby elucidating the underlying mechanistic pathways. Behavioral analyses revealed a diminution in social interaction capabilities alongside an augmented anxiety phenotype, as evidenced by open field and elevated plus maze assessments; both phenotypes were ameliorated after vitamin D3 supplementation. Electrophysiological assays underscored the augmented inhibition of paired-pulse facilitation, indicating impaired neuroplasticity in Cyp11a1 H11-modified mice. An elevation in progesterone concentrations was noted, alongside a significant upregulation of Th1-related cytokines (IL-6 and TNFα) across the plasma, placental, and frontal cortex-a pathological state mitigable through vitamin D3 intervention. Western blotting revealed a vitamin D-mediated rectification of vitamin D receptor and PGC-1α expression dysregulations. Immunofluorescence assays revealed microglial activation in the knock-in model, which was reversible upon vitamin D3 treatment. In conclusion, Cyp11a1 overexpression in the placenta recapitulated an autism-like phenotype in murine models, and vitamin D3 administration effectively ameliorated the resultant neurobehavioral and neuroinflammatory derangements. This study substantiates the application of Cyp11a1 as a biomarker in prenatal diagnostics and posits that prenatal vitamin D3 supplementation is a viable prophylactic measure against perturbations in steroid hormone metabolism associated with ASD pathogenesis.

2.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 527-534, 2024 May 20.
Artigo em Chinês | MEDLINE | ID: mdl-38948273

RESUMO

Infertility affects an estimated 10 to 15 percent of couples worldwide, with approximately half of the cases attributed to male-related issues. Most men diagnosed with infertility exhibit symptoms such as oligospermia, asthenospermia, azoospermia, and compromised sperm quality. Spermatogenesis is a complex and tightly coordinated process of germ cell differentiation, precisely regulated at transcriptional, posttranscriptional, and translational levels to ensure stage-specific gene expression during the development of spermatogenic cells and normal spermiogenesis. N6-methyladenosine (m6A) stands out as the most prevalent modification on eukaryotic mRNA, playing pivotal roles in various biological processes, including mRNA splicing, transportation, and translation. RNA methylation modification is a dynamic and reversible process primarily mediated by "writers", removed by "erasers", and recognized by "readers". In mammals, the aberrant methylation modification of m6A on mRNA is associated with a variety of diseases, including male infertility. However, the precise involvement of disrupted m6A modification in the pathogenesis of human male infertility remains unresolved. Intriguingly, a significant correlation has been found between the expression levels of m6A regulators in the testis and the severity of sperm concentration, motility, and morphology. Aberrant expression patterns of m6A regulatory proteins have been detected in anomalous human semen samples, including those of oligospermia, asthenozoospermia, and azoospermia. Furthermore, the examination of both sperm samples and testicular tissues revealed abnormal mRNA m6A modification, leading to reduced sperm motility and concentration in infertile men. Consequently, it is hypothesized that dysregulation of m6A modification might serve as an integral link in the mechanism of male infertility. This paper presents a comprehensive review of the recent discoveries regarding the spatial and temporal expression dynamics of m6A regulators in testicular tissues and the correlation between deregulated m6A regulators and human male infertility. Previous studies predominantly utilized constitutive or conditional knockout animal models for testicular phenotypic investigations. However, gene suppression in additional tissues could potentially influence the testis in constitutive knockout models. Furthermore, considering the compromised spermatogenesis observed in constitutive animals, distinguishing between the indirect effects of gene depletion on testicular development and its direct impact on the spermatogenic process is challenging, due to their intricate relationship. Such confounding factors might compromise the validity of the findings. To address this challenge, an inducible and conditional gene knockout model may serve as a superior approach. To date, nearly all reported studies have concentrated solely on the level changes of m6A and its regulators in germs cells, while the understanding of the function of m6A modification in testicular somatic cells remains limited. Testicular somatic cells, including peritubular myoid cells, Sertoli cells, and Leydig cells, play indispensable roles during spermatogenesis. Hence, comprehensive exploration of m6A modification within these cells as an additional crucial regulatory mechanism is warranted. In addition, exploration into the presence of unique methylation mechanisms or m6A regulatory factors within the testes is warranted. To elucidate the role of m6A modification in germ cells and testicular somatic cells, detailed experimental strategies need to be implemented. Among them, manipulation of the levels of key enzymes involved in m6A methylation and demethylation might be the most effective approach. Moreover, comprehensive analysis of the gene expression profiles involved in various signaling pathways, such as Wnt/ß-catenin, Ras/MAPK, and Hippo, in m6A-modified germ cells and testicular somatic cells can provide more insight into its regulatory role in the spermatogenesis process. Further research in this area could provide valuable insights for developing innovative strategies to treat male infertility. Finally, considering the mitigation impact of m6A imbalance regulation on disease, investigation concerning whether restoring the equilibrium of m6A modification regulation can restore normal spermatogenesis function is essential, potentially elucidating the pivotal clinical significance of m6A modulation in male infertility.


Assuntos
Adenosina , Infertilidade Masculina , Espermatogênese , Masculino , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Espermatogênese/genética , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metilação , Animais , Metiltransferases/metabolismo , Metiltransferases/genética , Espermatozoides/metabolismo , Testículo/metabolismo
3.
Anal Chem ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007441

RESUMO

G-quadruplex structures within the nuclear genome (nG4) is an important regulatory factor, while the function of G4 in the mitochondrial genome (mtG4) still needs to be explored, especially in human sperms. To gain a better understanding of the relationship between mtG4 and mitochondrial function, it is crucial to develop excellent probes that can selectively visualize and track mtG4 in both somatic cells and sperms. Herein, based on our previous research on purine frameworks, we attempted for the first time to extend the conjugated structure from the C-8 site of purine skeleton and discovered that the purine derivative modified by the C-8 aldehyde group is an ideal platform for constructing near-infrared probes with extremely large Stokes shift (>220 nm). Compared with the compound substituted with methylpyridine (PAP), the molecule substituted with methylthiazole orange (PATO) showed better G4 recognition ability, including longer emission (∼720 nm), more significant fluorescent enhancement (∼67-fold), lower background, and excellent photostability. PATO exhibited a sensitive response to mtG4 variation in both somatic cells and human sperms. Most importantly, PATO helped us to discover that mtG4 was significantly increased in cells with mitochondrial respiratory chain damage caused by complex I inhibitors (6-OHDA and rotenone), as well as in human sperms that suffer from oxidative stress. Altogether, our study not only provides a novel ideal molecular platform for constructing high-performance probes but also develops an effective tool for studying the relationship between mtG4 and mitochondrial function in both somatic cells and human sperms.

4.
Behav Sci (Basel) ; 14(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38920762

RESUMO

Previous research found that accents cause the listener to exhibit prejudice toward the speaker. The present study tested whether the familiarity of the listener and speaker moderated this effect. Study 1 tested this question in a simulated recruit scenario and found that participants were less likely to recruit candidates with an accent, but this effect existed only when the candidate was a stranger to the interviewer, not when the candidate was an acquaintance. Study 2 retested this question in a scenario of talking one-on-one and also found that the effect of accent existed only when they were strangers, not when they were acquaintances. Both studies suggested that the effect of accent on the attitude and behavior of the listener vanished when the speaker and listener were familiar with each other. This work offers insights for understanding the effect of accent on social interaction from the perspective of the familiarity of the speaker and listener and reveals the moderated role of familiarity in the dynamic of the effect of accent.

5.
Zookeys ; 1204: 1-13, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873221

RESUMO

Four new erythroneurine leafhopper species, Empoascanaraaparaoides Wang & Song, sp. nov., Motagamengyangensis Wang & Song, sp. nov., Motagaacicularis Wang & Song, sp. nov., and Tautoneuraqingxiuensis Wang & Song, sp. nov. from karst areas in Southwestern China, are described and illustrated.

6.
Cogn Neurodyn ; 18(3): 1033-1045, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38826670

RESUMO

Although our knowledge of autism spectrum disorder (ASD) has been deepened, the accurate diagnosis of ASD from normal individuals is still left behind. In this study, we proposed to apply the spatial pattern of the network topology (SPN) to identify children with ASD from normal ones. Based on two independent batches of electroencephalogram datasets collected separately, the accurate recognition of ASD from normal children was achieved by applying the proposed SPN features. Since decreased long-range connectivity was identified for children with ASD, the SPN features extracted from the distinctive topological architecture between two groups in the first dataset were used to validate the capacity of SPN in classifying ASD, and the SPN features achieved the highest accuracy of 92.31%, which outperformed the other features e.g., power spectrum density (84.62%), network properties (76.92%), and sample entropy (73.08%). Moreover, within the second dataset, by using the model trained in the first dataset, the SPN also acquired the highest sensitivity in recognizing ASD, when compared to the other features. These results consistently illustrated that the functional brain network, especially the intrinsic spatial network topology, might be the potential biomarker for the diagnosis of ASD.

7.
Reprod Biol ; 24(2): 100881, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38772286

RESUMO

Infertility poses a global health and social challenge, affecting approximately 15% of couples at childbearing age, with half of the cases attributed to male factors, wherein genetic factors exert a substantial role. In our prior investigation, we identified loss-of-function variants within the gene encoding glutamine-rich protein 2 (QRICH2) in two consanguineous families, leading to various morphological abnormalities in sperm flagella and male infertility. Moreover, our observations in Qrich2 knockout mice revealed a pronounced reduction in spermatozoa count. However, the underlying mechanism remains elusive, prompting further investigation in the current study. By conducting experiments such as Hematoxylin-eosin (HE) staining, immunofluorescence staining, flow cytometry, and single sperm metabolism analysis on the testes and spermatozoa of Qrich2 knockout mice, we found a strong antioxidant capacity mediated by QRICH2 both in vivo and in vitro. Qrich2 knockout led to elevated levels of ROS, consequently inducing DNA damage in spermatids, which in turn triggered increased autophagy and apoptosis, ultimately causing a significant decrease in spermatozoa count. Incubation with the N-terminal purified protein of QRICH2 exhibited potent strong antioxidant activity at the cell and spermatozoa levels in vitro, thereby enhancing spermatozoa viability and motility. Therefore, QRICH2 plays a crucial role in safeguarding spermatids from excessive ROS-induced damage by augmenting antioxidant capacity, thereby promoting spermatozoa survival and improving motility. Furthermore, the N-terminal purified protein of QRICH2 shows promise as an additive for protecting spermatozoa during preservation and cryopreservation.


Assuntos
Antioxidantes , Camundongos Knockout , Motilidade dos Espermatozoides , Espermatozoides , Animais , Masculino , Camundongos , Antioxidantes/metabolismo , Apoptose , Sobrevivência Celular , Dano ao DNA , Infertilidade Masculina/genética , Espécies Reativas de Oxigênio/metabolismo , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/fisiologia
8.
Biol Reprod ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38785325

RESUMO

Klinefelter syndrome (KS) is the most prevalent chromosomal disorder occurring in males. It is defined by an additional X chromosome, 47,XXY, resulting from errors in chromosomal segregation during parental gametogenesis. A major phenotype is impaired reproductive function, in the form of low testosterone and infertility. This review comprehensively examines the genetic and physiological factors contributing to infertility in KS, in addition to emergent assisted reproductive technologies, and the unique ethical challenges KS patients face when seeking infertility treatment. The pathology underlying KS is increased susceptibility for meiotic errors during spermatogenesis, resulting in aneuploid or even polyploid gametes. Specific genetic elements potentiating this susceptibility include polymorphisms in checkpoint genes regulating chromosomal synapsis and segregation. Physiologically, the additional sex chromosome also alters testicular endocrinology and metabolism by dysregulating interstitial and Sertoli cell function, collectively impairing normal sperm development. Additionally, epigenetic modifications like aberrant DNA methylation are being increasingly implicated in these disruptions. We also discuss assisted reproductive approaches leveraged in infertility management for KS patients. Application of assisted reproductive approaches, along with deep comprehension of the meiotic and endocrine disturbances precipitated by supernumerary X chromosomes, shows promise in enabling biological parenthood for KS individuals. This will require continued multidisciplinary collaboration between experts with background of genetics, physiology, ethics and clinical reproductive medicine.

9.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 709-716, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38655615

RESUMO

SLC45A1 encodes a glucose transporter protein highly expressed in the brain. Mutations in SLC45A1 may lead to neurological diseases and developmental disorders, but its exact role is poorly understood. DNA G-quadruplexes (DNA G4s) are stable structures formed by four guanine bases and play a role in gene regulation and genomic stability. Changes in DNA G4s may affect brain development and function. The mechanism linking alterations in DNA G-quadruplex structures to SLC45A1 pathogenicity remains unknown. In this study, we identify a functional DNA G-quadruplex and its key binding site on SLC45A1 (NM_001080397.3: exon 2: c.449 G>A: p.R150K). This variant results in the upregulation of mRNA and protein expression, which may lead to intellectual developmental disorder with neuropsychiatric features. Mechanistically, the mutation is found to disrupt DNA G-quadruplex structures on SLC45A1, leading to transcriptional enhancement and a gain-of-function mutation, which further causes increased expression and function of the SLC45A1 protein. The identification of the functional DNA G-quadruplex and its effects on DNA G4s may provide new insights into the genetic basis of SLC45A1 pathogenicity and highlight the importance of DNA G4s of SLC45A1 in regulating gene expression and brain development.


Assuntos
Deficiências do Desenvolvimento , Quadruplex G , Humanos , Deficiências do Desenvolvimento/genética , Mutação com Ganho de Função , Células HEK293 , Sítios de Ligação/genética
10.
Sci Rep ; 14(1): 8132, 2024 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584153

RESUMO

To figure out how does SARS-CoV-2 affect sperm parameters and what influencing factors affect the recovery of sperm quality after infection? We conducted a prospective cohort study and initially included 122 men with SARS-CoV-2 infection. The longest time to track semen quality after infection is 112 days and 58 eligible patients were included in our study eventually. We subsequently exploited a linear mixed-effects model to statistically analyze their semen parameters at different time points before and after SARS-CoV-2 infection. Semen parameters were significantly reduced after SARS-CoV-2 infection, including total sperm count (211 [147; 347] to 167 [65.0; 258], P < 0.001), sperm concentration (69.0 [38.8; 97.0] to 51.0 [25.5; 71.5], P < 0.001), total sperm motility (57.5 [52.3; 65.0] to 51.0 [38.5; 56.8], P < 0.001), progressive motility (50.0 [46.2; 58.0] to 45.0 [31.5; 52.8], P < 0.001). The parameters displayed the greatest diminution within 30 days after SARS-CoV-2 infection, gradually recovered thereafter, and exhibited no significant difference after 90 days compared with prior to COVID-19 infection. In addition, the patients in the group with a low-grade fever showed a declining tendency in semen parameters, but not to a significant degree, whereas those men with a moderate or high fever produced a significant drop in the same parameters. Semen parameters were significantly reduced after SARS-CoV-2 infection, and fever severity during SARS-CoV-2 infection may constitute the main influencing factor in reducing semen parameters in patients after recovery, but the effect is reversible and the semen parameters gradually return to normal with the realization of a new spermatogenic cycle.


Assuntos
COVID-19 , Infertilidade Masculina , Humanos , Masculino , Análise do Sêmen , Sêmen , Estudos Prospectivos , Motilidade dos Espermatozoides , SARS-CoV-2 , Espermatozoides , Contagem de Espermatozoides
11.
Cell Mol Life Sci ; 81(1): 170, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597976

RESUMO

In our prior investigation, we discerned loss-of-function variants within the gene encoding glutamine-rich protein 2 (QRICH2) in two consanguineous families, leading to various morphological abnormalities in sperm flagella and male infertility. The Qrich2 knockout (KO) in mice also exhibits multiple morphological abnormalities of the flagella (MMAF) phenotype with a significantly decreased sperm motility. However, how ORICH2 regulates the formation of sperm flagella remains unclear. Abnormal glutamylation levels of tubulin cause dysplastic microtubules and flagella, eventually resulting in the decline of sperm motility and male infertility. In the current study, by further analyzing the Qrich2 KO mouse sperm, we found a reduced glutamylation level and instability of tubulin in Qrich2 KO mouse sperm flagella. In addition, we found that the amino acid metabolism was dysregulated in both testes and sperm, leading to the accumulated glutamine (Gln) and reduced glutamate (Glu) concentrations, and disorderly expressed genes responsible for Gln/Glu metabolism. Interestingly, mice fed with diets devoid of Gln/Glu phenocopied the Qrich2 KO mice. Furthermore, we identified several mitochondrial marker proteins that could not be correctly localized in sperm flagella, which might be responsible for the reduced mitochondrial function contributing to the reduced sperm motility in Qrich2 KO mice. Our study reveals a crucial role of a normal Gln/Glu metabolism in maintaining the structural stability of the microtubules in sperm flagella by regulating the glutamylation levels of the tubulin and identifies Qrich2 as a possible novel Gln sensor that regulates microtubule glutamylation and mitochondrial function in mouse sperm.


Assuntos
Glutamina , Infertilidade Masculina , Animais , Humanos , Masculino , Camundongos , Ácido Glutâmico , Infertilidade Masculina/genética , Camundongos Knockout , Microtúbulos , Mitocôndrias , Proteínas Mitocondriais , Sêmen , Motilidade dos Espermatozoides , Espermatozoides , Tubulina (Proteína)
12.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38342685

RESUMO

Perinatal depression, with a prevalence of 10 to 20% in United States, is usually missed as multiple symptoms of perinatal depression are common in pregnant women. Worse, the diagnosis of perinatal depression still largely relies on questionnaires, leaving the objective biomarker being unveiled yet. This study suggested a safe and non-invasive technique to diagnose perinatal depression and further explore its underlying mechanism. Considering the non-invasiveness and clinical convenience of electroencephalogram for mothers-to-be and fetuses, we collected the resting-state electroencephalogram of pregnant women at the 38th week of gestation. Subsequently, the difference in network topology between perinatal depression patients and healthy mothers-to-be was explored, with related spatial patterns being adopted to achieve the classification of pregnant women with perinatal depression from those healthy ones. We found that the perinatal depression patients had decreased brain network connectivity, which indexed impaired efficiency of information processing. By adopting the spatial patterns, the perinatal depression could be accurately recognized with an accuracy of 87.88%; meanwhile, the depression severity at the individual level was effectively predicted, as well. These findings consistently illustrated that the resting-state electroencephalogram network could be a reliable tool for investigating the depression state across pregnant women, and will further facilitate the clinical diagnosis of perinatal depression.


Assuntos
Depressão , Transtorno Depressivo , Feminino , Gravidez , Humanos , Depressão/diagnóstico , Couro Cabeludo , Gestantes , Eletroencefalografia
13.
Andrology ; 12(2): 338-348, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37290064

RESUMO

BACKGROUND: The ubiquitin ligase HECT, UBA, and WWE domain-containing E3 ubiquitin protein ligase 1 is essential for the establishment and maintenance of spermatogonia. However, the role of HECT, UBA, and WWE domain-containing E3 ubiquitin protein ligase 1 in regulating germ cell differentiation remains unclear, and clinical evidence linking HECT, UBA, and WWE domain-containing E3 ubiquitin protein ligase 1 to male infertility pathogenesis is lacking. OBJECTIVE: This study aims to investigate the role of HUWE1 in germ cell differentiation and the mechanism by which a HUWE1 single nucleotide polymorphism increases male infertility risk. MATERIALS AND METHODS: We analyzed HUWE1 single nucleotide polymorphisms in 190 non-obstructive azoospermia patients of Han Chinese descent. We evaluated HECT, UBA, and WWE domain-containing E3 ubiquitin protein ligase 1 regulation by retinoic acid receptor alpha using chromatin immunoprecipitation assays, electrophoretic mobility shift assays, and siRNA-mediated RARα knockdown. Using C18-4 spermatogonial cells, we determined whether HECT, UBA, and WWE domain-containing E3 ubiquitin protein ligase 1 participated in retinoic acid-mediated retinoic acid receptor alpha signaling. We performed luciferase assays, cell counting kit-8 assays, immunofluorescence, quantitative real-time polymerase chain reaction, and western blotting. We quantified HUWE1 and retinoic acid receptor alpha in testicular biopsies from non-obstructive azoospermia and obstructive azoospermia patients using quantitative real-time polymerase chain reaction and immunofluorescence. RESULTS: Three HUWE1 single nucleotide polymorphisms were significantly associated with spermatogenic failure in 190 non-obstructive azoospermia patients; one (rs34492591) was in the HUWE1 promoter. Retinoic acid receptor alpha regulates HUWE1 gene expression by binding to its promoter. HECT, UBA, and WWE domain-containing E3 ubiquitin protein ligase 1 participates in retinoic acid/retinoic acid receptor alpha signaling pathway and regulates the expression of germ cell differentiation genes STRA8 and SCP3 to inhibit cell proliferation and reduce γH2AX accumulation. Notably, significantly lower levels of HUWE1 and RARα were detected in testicular biopsy samples from non-obstructive azoospermia patients. CONCLUSIONS: An HUWE1 promoter single nucleotide polymorphism significantly downregulates its expression in non-obstructive azoospermia patients. Mechanistically, HECT, UBA, and WWE domain-containing E3 ubiquitin protein ligase 1 regulates germ cell differentiation during meiotic prophase through its participation in retinoic acid/retinoic acid receptor alpha signaling and subsequent modulation of γH2AX. Taken together, these results strongly suggest that the genetic polymorphisms of HUWE1 are closely related to spermatogenesis and non-obstructive azoospermia pathogenesis.


Assuntos
Azoospermia , Polimorfismo de Nucleotídeo Único , Humanos , Masculino , Meiose , Azoospermia/genética , Receptor alfa de Ácido Retinoico/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Tretinoína , China , Proteínas Supressoras de Tumor/genética
14.
iScience ; 26(11): 108030, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37920670

RESUMO

Genetic studies have elucidated the critical roles of Phf7 in germline development in animals; however, the exact etiology of Phf7 mutations leading to male infertility and the possibility of mechanism-based therapy are still unclear and warrant further investigation. Using the Phf7 knockout mouse model, we verified that genetic defects were responsible for male infertility by preventing histone-to-protamine exchange, as previously reported. The deficiency of spermatogenesis caused by Phf7 deletion through the endogenous retrovirus-mediated activation of the immune pathway is a common mechanism of infertility. Furthermore, we identified PPARα as a promising target of immunity and inflammation in the testis, where endogenous retroviruses are suppressed, and Phf7 as a crucial regulator of endogenous retrovirus-mediated immune regulation and revealed its role as an epigenetic reader. The loss of Phf7 activates immune pathways, which can be rescued by the PPARα agonist astaxanthin. These results showed that astaxanthin is a potential therapeutic agent for treating male infertility. The findings in our study provide insights into the molecular mechanisms underlying male infertility and suggest potential targets for future research and therapeutic development.

15.
Front Immunol ; 14: 1234577, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854606

RESUMO

Background: Preeclampsia is a pregnancy-specific disorder that always causes maternal and fetal serious adverse outcome. Disturbances in maternal immune tolerance to embryo at the maternal-fetal interface (MFI) may be associated with preeclampsia onset. Recent studies have revealed the reduced expression pattern of HLA-F at the MFI in preeclampsia, while the mechanism of it mediating maternal fetal immune tolerance has not been revealed. Methods: Single-cell RNA sequencing on placental decidua was performed to reveal the immune disturbances landscape at the MFI in preeclampsia. Human Jar cells and NK-92MI cells were employed to study the role of HLA-F in trophoblasts and lymphocyte. Results: A total of 101,250 cells were classified into 22 cell clusters. Disease-related IGFBP1+SPP1+ extracellular villus trophoblast (EVT) was identified in the preeclamptic placental decidua, accompanied by newly discovered immune cellular dysfunction such as reduced ribosomal functions of NK populations and abnormal expression of antigen-presenting molecules in most cell clusters. Certain genes that are characteristic of the intermediate stage of myeloid or EVT cell differentiation were found to have unexplored but important functions in the pathogenesis of preeclampsia; specifically, we detected enhanced cell cross-talk between IGFBP1+SPP1+ EVT2 or SPP1+M1 cells and their receptor cell populations at the MFI of PE patients compared to controls. With respect to HLA-F, mIF staining confirmed its reduced expression in PE samples compared to controls. Over-expression of HLA-F in Jar cells promoted cell proliferation, invasion, and migration while under-expression had the opposite effect. In NK-92MI cells, over-expression of HLA-F increased the secretion of immunoregulation cytokines such as CSF1 and CCL22, and promoted adaptive NKG2C+NK cell transformation. Conclusions: We revealed the immune disturbance landscape at the MFI in preeclampsia. Our findings regarding cellular heterogeneity and immune cellular dysfunction, as revealed by scRNA-seq, and the function of HLA-F in cells provide new perspectives for further investigation of their roles in the pathogenesis of preeclampsia, and then provide potential new therapeutic target.


Assuntos
Decídua , Tolerância Imunológica , Pré-Eclâmpsia , Feminino , Humanos , Gravidez , Decídua/imunologia , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Células Matadoras Naturais , Placenta/imunologia , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/imunologia , Pré-Eclâmpsia/metabolismo
16.
BMC Med Educ ; 23(1): 664, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710261

RESUMO

BACKGROUND: Simulation is an increasingly used novel method for the education of medical professionals. This study aimed to systematically review the efficacy of high-fidelity (HF) simulation compared with low-fidelity (LF) simulation or no simulation in advanced life support (ALS) training. METHODS: A comprehensive search of the PubMed, Chinese Biomedicine Database, Embase, CENTRAL, ISI, and China Knowledge Resource Integrated Database was performed to identify randomized controlled trials (RCTs) that evaluated the use of HF simulation in ALS training. Quality assessment was based on the Cochrane Handbook for Systematic Reviews of Interventions version 5.0.1. The primary outcome was the improvement of knowledge and skill performance. The secondary outcomes included the participants' confidence and satisfaction at the course conclusion, skill performance at one year, skill performance in actual resuscitation, and patient outcomes. Data were synthesized using the RevMan 5.4 software. RESULTS: Altogether, 25 RCTs with a total of 1,987 trainees were included in the meta-analysis. In the intervention group, 998 participants used HF manikins, whereas 989 participants received LF simulation-based or traditional training (classical training without simulation). Pooled data from the RCTs demonstrated a benefit in improvement of knowledge [standardized mean difference (SMD) = 0.38; 95% confidence interval (CI): 0.18-0.59, P = 0.0003, I2 = 70%] and skill performance (SMD = 0.63; 95% CI: 0.21-1.04, P = 0.003, I2 = 92%) for HF simulation when compared with LF simulation and traditional training. The subgroup analysis revealed a greater benefit in knowledge with HF simulation compared with traditional training at the course conclusion (SMD = 0.51; 95% CI: 0.20-0.83, P = 0.003, I2 = 61%). Studies measuring knowledge at three months, skill performance at one year, teamwork behaviors, participants' satisfaction and confidence demonstrated no significant benefit for HF simulation. CONCLUSIONS: Learners using HF simulation more significantly benefited from the ALS training in terms of knowledge and skill performance at the course conclusion. However, further research is necessary to enhance long-term retention of knowledge and skill in actual resuscitation and patient's outcomes.


Assuntos
Treinamento com Simulação de Alta Fidelidade , Humanos , Simulação por Computador , Escolaridade , Ensaios Clínicos Controlados Aleatórios como Assunto
17.
Placenta ; 139: 1-11, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37269649

RESUMO

INTRODUCTION: The placental tissue stress of intrahepatic cholestasis of pregnancy (ICP) is activated by ERS under hypoxia condition. PERK signaling pathway is the key pathway for UPR regulation, and is first to activated during ERS. WFS1, as an important regulatory gene of UPR pathway, participates in ERS regulation. The purpose of our study is to explore the expression level and mutual regulation mechanisms of WFS1 and PERK-mediated UPR pathway in ICP placental tissue cell under stress. METHODS: Blood and placenta samples were obtained from the ICP patients and ethinylestradiol (EE)-induced intrahepatic cholestasis pregnant rats. IHC and WB were used to detect the expression of WFS1, key factors of PERK pathway (GRP78, PERK, eIF2a, P-eIF2α, ATF4) and placental stress peptides (CRH, UCN). Furthermore, qPCR was carried out to detect mRNA expression of above indicators. RESULTS: The expression levels of WFS1 and key factors of PERK pathway were significantly increased in severe ICP placental tissues. Moreover, qPCR and WB showed that relative mRNA and protein expression levels of WFS1 and key factors of PERK pathways in placenta tissues of severe ICP and EE-induced intrahepatic cholestasis pregnant rats were higher than those in control group to varying degrees, while CRH and UCN were descended. Meanwhile, after WFS1-siRNA targeted silencing of the WFS1 gene, the protein expression levels of PERK, P-eIF2α, ATF4 were significantly increased, while CRH and UCN protein were significantly decreased. DISCUSSION: Our study revealed that the activation of WFS1 and PERK-p-eIF2α-ATF4 signaling pathway may contribute to stress regulation in placental tissue cells of intrahepatic cholestasis of pregnancy, thereby avoiding adverse pregnancy outcomes.


Assuntos
Colestase Intra-Hepática , Placenta , Gravidez , Feminino , Ratos , Animais , Placenta/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Colestase Intra-Hepática/genética , Transdução de Sinais , RNA Mensageiro/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Membrana/metabolismo
18.
Toxins (Basel) ; 15(5)2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37235346

RESUMO

Ingestion of food toxins such as aflatoxin B1 (AFB1) during pregnancy may impair fetal neurodevelopment. However, animal model results may not be accurate due to the species' differences, and testing on humans is ethically impermissible. Here, we developed an in vitro human maternal-fetal multicellular model composed of a human hepatic compartment, a bilayer placental barrier, and a human fetal central nervous system compartment using neural stem cells (NSCs) to investigate the effect of AFB1 on fetal-side NSCs. AFB1 passed through the HepG2 hepatocellular carcinoma cells to mimic the maternal metabolic effects. Importantly, even at the limited concentration (0.0641 ± 0.0046 µM) of AFB1, close to the national safety level standard of China (GB-2761-2011), the mixture of AFB1 crossing the placental barrier induced NSC apoptosis. The level of reactive oxygen species in NSCs was significantly elevated and the cell membrane was damaged, causing the release of intracellular lactate dehydrogenase (p < 0.05). The comet experiment and γ-H2AX immunofluorescence assay showed that AFB1 caused significant DNA damage to NSCs (p < 0.05). This study provided a new model for the toxicological evaluation of the effect of food mycotoxin exposure during pregnancy on fetal neurodevelopment.


Assuntos
Aflatoxina B1 , Micotoxinas , Animais , Feminino , Gravidez , Humanos , Aflatoxina B1/toxicidade , Aflatoxina B1/metabolismo , Placenta/metabolismo , Dano ao DNA , Micotoxinas/metabolismo , Fígado/metabolismo
19.
ACS Sens ; 8(6): 2186-2196, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37224082

RESUMO

To monitor the levels of mitochondrial DNA G-quadruplexes (mtDNA G4s) in spermatozoa and to explore the possibility using mtDNA G4s as a reliable marker in patients with multiple clinical insemination failures, a novel chemical TPE-mTO probe engineered in our previous work was used on both samples from the mice sperm and from patients with fertilization failure. Expression of valosin-containing protein and the zona-free hamster egg assay were used to evaluate mitophagy and human sperm penetration. RNA-sequencing was used to explore expression changes of key genes affected by mtDNA G4s. Results showed that the probe can track mtDNA G4s in spermatozoa easily and quickly with fewer backgrounds. Significantly increased mtDNA G4s were also found in patients with fertilization failure, using the flow-cytometry-based TPE-mTO probe detection method. A sperm-hamster egg penetration experiment showed that abnormal fertilization caused by increased mtDNA G4s can be effectively restored by a mitophagy inducer. This study provides a novel method for monitoring etiological biomarkers in patients with clinical infertility and treatment for patients with abnormal fertilization caused by mtDNA G4 dysfunction.


Assuntos
Corantes Fluorescentes , Quadruplex G , Cricetinae , Humanos , Masculino , Camundongos , Animais , Corantes Fluorescentes/metabolismo , Sêmen , Espermatozoides/metabolismo , Interações Espermatozoide-Óvulo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo
20.
Front Neurol ; 14: 1153509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168668

RESUMO

Background: The retrograde endocannabinoid (eCB) pathway is closely associated with the etiology of major depressive disorder (MDD) at both pathophysiological and genetic levels. This study aimed to investigate the potential role of genetic mutations in the eCB pathway and underlying mechanisms in Han Chinese patients with MDD. Methods: A total of 96 drug-naïve patients with first-episode MDD and 62 healthy controls (HCs) were recruited. Whole-exome sequencing was performed to identify the gene mutation profiles in patients with MDD. Results were filtered to focus on low-frequency variants and rare mutations (minor allele frequencies <0.05) related to depressive phenotypes. Enrichment analyses were performed for 146 selected genes to examine the pathways in which the most significant enrichment occurred. A protein-protein interaction (PPI) network analysis was performed to explore the biological functions of the eCB pathway. Finally, based on current literature, a preliminary analysis was conducted to explore the effect of genetic mutations on the function of this pathway. Results: Our analysis identified 146 (15.02%) depression-related genetic mutations in patients with MDD when compared with HCs, and 37 of the mutations were enriched in the retrograde eCB signaling pathway. Seven hub genes in the eCB pathway were closely related to mitochondrial function, including Complex I genes (NDUFS4, NDUFV2, NDUFA2, NDUFA12, NDUFB11) and genes associated with protein (PARK7) and enzyme (DLD) function in the regulation of mitochondrial oxidative stress. Conclusion: These results indicate that genetic mutations in the retrograde eCB pathway represent potential etiological factors associated with the pathogenesis of MDD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...