Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Angew Chem Int Ed Engl ; : e202414702, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320088

RESUMO

Aqueous Zn-metal batteries are of great interest due to their high material abundance, low production cost, and excellent safety. However, they suffer from severe side reactions and notorious dendrite growth closely related to electrolytes. Here, in-situ generated zwitterionic polymers are used as gel electrolytes to overcome these problems. It is shown that anions and H2O, but not anions and cations, are preferentially immobilized at different sites of zwitterionic polymers, facilitating the free migration of Zn2+ and reducing the side reactions. This immobilization can be associated with the dipole moment of zwitterionic polymers. As a result, poly[3-dimethyl(methacryloyl oxyethyl) ammonium propane sulfonate] (PDMAPS) stands out from a series of zwitterionic polymers and outperforms the other candidates in electrochemical performance. The symmetric cells using PDMAPS smoothly operate ~9000 h at 0.5 mA cm-2 for 0.5 mAh cm-2, much better than the controls. Moreover, PDMAPS enables an Ah-level pouch cell for continuous cycling. These results not only benefit the rational molecular design of advanced electrolytes, but also demonstrate the promising potential of zwitterionic polymers in aqueous Zn-metal batteries.

2.
Angew Chem Int Ed Engl ; : e202411884, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39218800

RESUMO

The inhomogeneous plating/stripping of Zn anode, attributed to dendrite growth and parasitic reactions at the electrode/electrolyte interface, severely restricts its cycling life-span. Here, trace zwitterions (trifluoroacetate pyridine, TFAPD) are introduced into the aqueous electrolyte to construct a multifunctional interface that enhances the reversibility of Zn anode. The TFA- anions with strong specific adsorption adhere onto the Zn surface to reconstruct the inner Helmholtz plane (IHP), preventing the hydrogen evolution and corrosion side reactions caused by free H2O. The Py+ cations accumulate on the outer Helmholtz plane (OHP) of Zn anode with the force of electric field during Zn2+ plating, forming a shielding layer to uniformize the deposition of Zn2+. Besides, the adsorbed TFA- and Py+ promote the desolvation process of Zn2+ resulting in fast reaction kinetics. Thus, the Zn||Zn cells present an outstanding cycling performance of more than 10000 hours. And even at 85% utilization rate of Zn, it can stably cycle for over 200 hours at 10 mA cm-2 and 10 mAh cm-2. The Zn||I2 full cell exhibits a capacity retention of over 95% even after 30000 cycles. Remarkably, the Zn||I2 pouch cells (95 mAh) deliver a high-capacity retention of 99% after 750 cycles.

3.
Biometals ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154116

RESUMO

The link between exposure to a particular heavy metal or metalloid and the development of anemia is well established. However, the association between combined exposure to multiple heavy metal(loid)s and anemia in children is still lacking in evidence. In this study, a total of 266 children aged 3 to 7 were recruited from Guiyu, China. Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure blood heavy metal(loid) concentrations. Blood cell count, hemoglobin (HGB), mean corpuscular hemoglobin (MCH), mean corpuscular volume (MCV), mean corpuscular hemoglobin concentration (MCHC), hematocrit (HCT), and red blood cell distribution width (RDW) were measured by an automated hematology analyzer. Erythrocyte-related parameters were negatively correlated with the Cu and Cu/Zn ratios and positively correlated with Cr, Ni, Zn, and Se by Spearman correlation analysis. Only blood Cu level was negatively correlated with HGB [ß = -2.74, (95% Cl: -4.49, -0.995)], MCH [ß = -0.505, (95% Cl: -0.785, -0.226)], MCV [ß = -1.024, (95% Cl: -1.767, -0.281)], and MCHC [ß = -2.137, (95% Cl: -3.54, -0.734)] by multiple linear regression analysis. The Bayesian Kernel Machine Regression (BKMR) model analysis indicated a negative correlation between the combined exposure to Cu, Zn, Pb, and Cr and MCH and MCV. The single-factor analysis showed a considerable statistical difference only with Cu on MCV, MCH, and HGB. Furthermore, the interaction analysis highlighted the interdependent effects of Cu and Zn, Pb and Zn, and Cr and Zn on MCH and MCV levels. Additionally, the oxidation and/or antioxidation reactions may play a significant role in the development of metal(loid)-induced anemia risk. It is crucial to investigate the effects of co-exposure to multiple heavy metal(loid) elements on anemia, especially the interrelationships and mechanisms among them.

4.
J Physiol ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39197088

RESUMO

Heavy metals disrupt mitochondrial function and activate the NOD-like receptor pyrin-containing 3 (NLRP3) inflammasome. We investigated the effect of lead (Pb)/cadmium (Cd) on mitochondrial function and NLRP3 inflammasome activation in human trophoblast under normoxic, hypoxic and pro-inflammatory conditions. JEG-3, BeWo and HTR-8/SVneo cells were exposed to Pb or Cd for 24 h in the absence or presence of hypoxia or pro-inflammatory lipopolysaccharide (LPS) or poly(I:C). Then, we evaluated cell viability, apoptosis, mitochondrial DNA copy number (mtDNAcn), mitochondrial membrane potential (ΔΨ), NLRP3 inflammasome proteins and interleukin (IL)-1ß secretion. Although our data showed that Pb, Cd, hypoxia, poly(I:C) and LPS decreased mtDNAcn in the three cell lines, the effects of these treatments on other biomarkers were different in the different cell lines. We found that hypoxia decreased ΔΨ and promoted apoptosis in JEG-3 cells, increased ΔΨ and prevented apoptosis in BeWo cells, and did not change ΔΨ and apoptosis in HTR-8/SVneo cells. Moreover, Pb under hypoxic conditions reduced ΔΨ and promoted apoptosis of BeWo cells. Exposure of BeWo and HTR-8/SVneo cells to hypoxia, Pb or Cd alone upregulated the expression of NLRP3 and pro-caspase 1 but did not activate the NLRP3 inflammasome since cleaved-caspase 1 and IL-1ß were not increased. To conclude, Pb and Cd affected trophoblast mitochondrial function and NLRP3 proteins in trophoblast cell lines, but in a cell line-specific way. KEY POINTS: The objective of this work was an understanding of the effect of lead (Pb) and cadmium (Cd) on mitochondrial function and NLRP3 inflammasome activation in human trophoblast cell lines under normoxic, hypoxic and pro-inflammatory conditions. Apoptosis of JEG-3 cells was increased by hypoxia, while in BeWo cells, apoptosis was decreased by hypoxia, and in HTR-8/SVneo, apoptosis was not affected by hypoxic treatment. Exposure to either Pb or Cd decreased mtDNAcn in three human placental trophoblast cell lines. However, Pb under hypoxia induced a decrease of ΔΨ and promoted apoptosis of BeWo cells, but Cd did not induce a reduction in ΔΨ in the three trophoblast cell lines under any conditions. Exposure to hypoxia, Pb or Cd increased NLRP3 and pro-caspase 1 in BeWo and HTR-8/SVneo cells. Our findings highlight that Pb and Cd affected trophoblast mitochondrial function and NLRP3 proteins in trophoblast cell lines but in a cell line-specific way.

5.
J Colloid Interface Sci ; 677(Pt B): 68-78, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39137564

RESUMO

Nickel-iron layered double hydroxide (NiFe-LDH) is hindered in its further development in water splitting due to its slow kinetics of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). In this study, the synthesis of OER (FeO(OH)/NiFe-LDH) and HER (Fe7S8(NiS)/NiFe-LDH) catalysts endowed with inherent electric fields exhibited exceptional electrocatalytic properties. The presence of the built-in electric field modulated the redistribution of electrons within the catalyst, while the formation of a heterostructure preserved the intrinsic characteristics of the catalyst. Moreover, this electron redistribution optimized the catalyst's adsorption of reaction intermediates (O*, OH*, OOH*, and H*) during the catalytic process, thereby enhancing the performance of both OER and HER. The electrolytic cell, equipped with these catalysts, achieved the current density of 10 mA cm-2 at a remarkably low potential of 1.409 V under industrial temperature conditions and demonstrated an ultra-long-term stability of 200 h.

6.
Environ Geochem Health ; 46(8): 296, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980420

RESUMO

Fine particular matter (PM2.5) and lead (Pb) exposure can induce insulin resistance, elevating the likelihood of diabetes onset. Nonetheless, the underlying mechanism remains ambiguous. Consequently, we assessed the association of PM2.5 and Pb exposure with insulin resistance and inflammation biomarkers in children. A total of 235 children aged 3-7 years in a kindergarten in e-waste recycling areas were enrolled before and during the Corona Virus Disease 2019 (COVID-19) lockdown. Daily PM2.5 data was collected and used to calculate the individual PM2.5 daily exposure dose (DED-PM2.5). Concentrations of whole blood Pb, fasting blood glucose, serum insulin, and high mobility group box 1 (HMGB1) in serum were measured. Compared with that before COVID-19, the COVID-19 lockdown group had lower DED-PM2.5 and blood Pb, higher serum HMGB1, and lower blood glucose and homeostasis model assessment of insulin resistance (HOMA-IR) index. Decreased DED-PM2.5 and blood Pb levels were linked to decreased levels of fasting blood glucose and increased serum HMGB1 in all children. Increased serum HMGB1 levels were linked to reduced levels of blood glucose and HOMA-IR. Due to the implementation of COVID-19 prevention and control measures, e-waste dismantling activities and exposure levels of PM2.5 and Pb declined, which probably reduced the association of PM2.5 and Pb on insulin sensitivity and diabetes risk, but a high level of risk of chronic low-grade inflammation remained. Our findings add new evidence for the associations among PM2.5 and Pb exposure, systemic inflammation and insulin resistance, which could be a possible explanation for diabetes related to environmental exposure.


Assuntos
COVID-19 , Resíduo Eletrônico , Exposição Ambiental , Resistência à Insulina , Chumbo , Material Particulado , Humanos , Criança , Chumbo/sangue , COVID-19/sangue , COVID-19/epidemiologia , Pré-Escolar , Masculino , Feminino , Glicemia/análise , Inflamação/sangue , Reciclagem , Proteína HMGB1/sangue , Insulina/sangue , Poluentes Atmosféricos , SARS-CoV-2
7.
Angew Chem Int Ed Engl ; 63(39): e202409774, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38953785

RESUMO

Anionic chemistry modulation represents a promising avenue to enhance the electrochemical performance and unlock versatile applications in cutting-edge energy storage devices. Herein, we propose a methodology that involves anionic chemistry of carbonate anions to tailor the electrochemical oxidation-reduction reactions of bismuth (Bi) electrodes, where the conversion energy barrier for Bi (0) to Bi (III) has been significantly reduced, endowing anionic full batteries with enhanced electrochemical kinetics and chemical self-charging property. The elaborately designed batteries with an air-switch demonstrate rapid self-recharging capabilities, recovering over 80 % of the electrochemical full charging capacity within a remarkably short timeframe of 1 hour and achieving a cumulative self-charging capacity of 5 Ah g-1. The aqueous self-charging battery strategy induced by carbonate anion, as proposed in this study, holds the potential for extending to various anionic systems, including seawater-based Cl- ion batteries. This work offers a universal framework for advancing next-generation multi-functional power sources.

8.
ACS Sens ; 9(8): 4037-4046, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39039775

RESUMO

Exploration of novel self-powered gas sensors free of external energy supply restrictions, such as light illumination and mechanical vibration, for flexible and wearable applications is in urgent need. Herein, this work constructs a flexible and self-powered NO2 gas sensor based on zinc-air batteries (ZABs) with the cathode of the ZABs also acting as the gas-sensitive layer. Furthermore, the SiO2 coating film, serving as a hydrophobic layer, increases the three-phase interfaces for the NO2 reduction reaction. The constructed sensors exhibit a high sensing response (0.3 V @ 5 ppm), an ultralow detection limit (61 ppb), a fast sensing process (129 and 103 s), and excellent selectivity. Moreover, the sensors also possess a wide working temperature range and a low working temperature tolerance (0.34 V at -15 °C). Simulations indicate that the hydrophobic surface at the cathode-hydrogel interface will accommodate more NO2 gas molecules at the reaction sites and prevent the influence of inner water evaporation and direct dissolution of NO2 in the electrolyte, which is beneficial to the enhanced gas sensing abilities. Finally, the self-powered sensing device is incorporated into a smart sensing system for practical applications. This work will pave a new insight into the construction of integrated and energy self-sufficient smart gas sensing systems.


Assuntos
Fontes de Energia Elétrica , Dióxido de Nitrogênio , Zinco , Zinco/química , Zinco/análise , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/química , Ar , Eletrodos , Limite de Detecção , Gases/análise , Gases/química , Dióxido de Silício/química
9.
Environ Int ; 190: 108833, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908275

RESUMO

BACKGROUND: Childhood exposure to polycyclic aromatic hydrocarbons (PAHs) or lead (Pb) is associated with epigenetic modifications. However, the effects of their co-exposures on IGF1 (Insulin-like growth factor 1) methylation and the potential role in child physical growth are unclear. METHODS: From our previous children study (N = 238, ages of 3-6), 75 children with higher total concentrations of urinary ten hydroxyl PAH metabolites (∑10OH-PAHs) from an e-waste recycling area, Guiyu, and 75 with lower ∑10OH-PAHs from Haojiang (reference area) were included. Pb and IGF1 P2 promoter methylation in peripheral blood were also measured. Multivariable linear regression analyses were performed to estimate individual associations, overall effects and interactions of co-exposure to OH-PAHs and Pb on IGF1 methylation were further explored using Bayesian kernel machine regression. RESULTS: Methylation of IGF1 (CG-232) was lower (38.00 vs. 39.74 %, P < 0.001), but of CG-207 and CG-137 were higher (59.94 vs. 58.41 %; 57.60 vs. 56.28 %, both P < 0.05) in exposed children than the reference. The elevated urinary 2-OHPhe was associated with reduced methylation of CG-232 (B = -0.051, 95 % CI: -0.096, -0.005, P < 0.05), whereas blood Pb was positively associated with methylation of CG-108 (B = 0.106, 95 %CI: 0.013, 0.199, P < 0.05), even after full adjustment. Methylations of CG-224 and 218 significantly decreased when all OH-PAHs and Pb mixtures were set at 35th - 40th and 45th - 55th percentile compared to when all fixed at 50th percentile. There were bivariate interactions of co-exposure to the mixtures on methylations of CG-232, 224, 218, and 108. Methylations correlated with height, weight, were observed in the exposed children. CONCLUSIONS: Childhood co-exposure to high PAHs and Pb from the e-waste may be associated with IGF1 promoter methylation alterations in peripheral blood. This, in turn, may interrupt the physical growth of preschool children.


Assuntos
Resíduo Eletrônico , Exposição Ambiental , Poluentes Ambientais , Fator de Crescimento Insulin-Like I , Chumbo , Hidrocarbonetos Policíclicos Aromáticos , Reciclagem , Criança , Pré-Escolar , Feminino , Humanos , Masculino , China , Metilação de DNA , Poluentes Ambientais/sangue , Poluentes Ambientais/urina , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/genética , Chumbo/efeitos adversos , Chumbo/sangue , Chumbo/farmacologia , Chumbo/urina , Hidrocarbonetos Policíclicos Aromáticos/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/farmacologia
10.
J Hazard Mater ; 475: 134862, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885585

RESUMO

The composition and metabolites of the gut microbiota can be altered by environmental pollutants. However, the effect of co-exposure to multiple pollutants on the human gut microbiota has not been sufficiently studied. In this study, gut microorganisms and their metabolites were compared between 33 children from Guiyu, an e-waste dismantling and recycling area, and 34 children from Haojiang, a healthy environment. The exposure level was assessed by estimating the daily intake (EDI) of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), 6PPD-quinone (6PPDQ), and metal(loid)s in kindergarten dust. Significant correlations were found between the EDIs of 6PPDQ, BDE28, PCB52, Ni, Cu, and the composition of gut microbiota and specific metabolites. The Bayesian kernel machine regression model showed negative correlations between the EDIs of five pollutants (6PPDQ, BDE28, PCB52, Ni, and Cu) and the composition of gut microbiota. The EDIs of these five pollutants were positively correlated with the levels of the metabolite 2,4-diaminobutyric acid, while negatively correlated with the levels of d-erythro-sphingosine and d-threitol. Our study suggests that exposure to 6PPDQ, BDE28, PCB52, Ni, and Cu in kindergarten dust is associated with alterations in the composition and metabolites of the gut microbiota. These alterations may be associated with children's health.


Assuntos
Poluentes Ambientais , Microbioma Gastrointestinal , Éteres Difenil Halogenados , Bifenilos Policlorados , Humanos , Éteres Difenil Halogenados/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/metabolismo , Feminino , Masculino , Criança , Poluentes Ambientais/toxicidade , Poluentes Ambientais/metabolismo , Poeira/análise , Pré-Escolar , Exposição Ambiental , Metabolômica , Resíduo Eletrônico , China , Metais/metabolismo , Metais/toxicidade , Organofosfatos/toxicidade , Organofosfatos/metabolismo
11.
Environ Pollut ; 355: 124151, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38740242

RESUMO

Exposure to fine particulate matter (PM2.5) and polycyclic aromatic hydrocarbons (PAHs) is known to be associated with the polarization of pro-inflammatory macrophages and the development of various cardiovascular diseases. The pro-inflammatory polarization of resident cardiac macrophages (cMacs) enhances the cleavage of membrane-bound myeloid-epithelial-reproductive receptor tyrosine kinase (MerTK) and promotes the formation of soluble MerTK (solMER). This process influences the involvement of cMacs in cardiac repair, thus leading to an imbalance in cardiac homeostasis, myocardial injury, and reduced cardiac function. However, the relative impacts of PM2.5 and PAHs on human cMacs have yet to be elucidated. In this study, we aimed to investigate the effects of PM2.5 and PAH exposure on solMER in terms of myocardial injury and left ventricular (LV) systolic function in healthy children. A total of 258 children (aged three to six years) were recruited from Guiyu (an area exposed to e-waste) and Haojiang (a reference area). Mean daily PM2.5 concentration data were collected to calculate the individual chronic daily intake (CDI) of PM2.5. We determined concentrations of solMER and creatine kinase MB (CKMB) in plasma, and hydroxylated PAHs (OH-PAHs) in urine. LV systolic function was evaluated by stroke volume (SV). Higher CDI values and OH-PAH concentrations were detected in the exposed group. Plasma solMER and CKMB were higher in the exposed group and were associated with a reduced SV. Elevated CDI and 1-hydroxynaphthalene (1-OHNa) were associated with a higher solMER. Furthermore, increased solMER concentrations were associated with a lower SV and higher CKMB. CDI and 1-OHNa were positively associated with CKMB and mediated by solMER. In conclusion, exposure to PM2.5 and PAHs may lead to the pro-inflammatory polarization of cMacs and increase the risk of myocardial injury and systolic function impairment in children. Furthermore, the pro-inflammatory polarization of cMacs may mediate cardiotoxicity caused by PM2.5 and PAHs.


Assuntos
Poluentes Atmosféricos , Material Particulado , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Material Particulado/toxicidade , Criança , Masculino , Feminino , Pré-Escolar , Poluentes Atmosféricos/toxicidade , c-Mer Tirosina Quinase , Função Ventricular Esquerda/efeitos dos fármacos , Exposição Ambiental/estatística & dados numéricos , Macrófagos/efeitos dos fármacos
13.
Ecotoxicol Environ Saf ; 276: 116287, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579532

RESUMO

Benzo(a)pyrene (BaP) can be detected in the human placenta. However, little is known about the effects of BaP exposure on different placental cells under various conditions. In this study, we aimed to investigate the effects of BaP on mitochondrial function, pyrin domain-containing protein 3 (NLRP3) inflammasome, and apoptosis in three human trophoblast cell lines under normoxia, hypoxia, and inflammatory conditions. JEG-3, BeWo, and HTR-8/SVneo cell lines were exposed to BaP under normoxia, hypoxia, or inflammatory conditions for 24 h. After treatment, we evaluated cell viability, apoptosis, aryl hydrocarbon receptor (AhR) protein and cytochrome P450 (CYP) gene expression, mitochondrial function, including mitochondrial DNA copy number (mtDNAcn), mitochondrial membrane potential (ΔΨm), intracellular adenosine triphosphate (iATP), and extracellular ATP (eATP), nitric oxide (NO), NLPR3 inflammasome proteins, and interleukin (IL)-1ß. We found that BaP upregulated the expression of AhR or CYP genes to varying degrees in all three cell lines. Exposure to BaP alone increased ΔΨm in all cell lines but decreased NO in BeWo and HTR-8/SVneo, iATP in HTR-8/SVneo, and cell viability in JEG-3, without affecting apoptosis. Under hypoxic conditions, BaP did not increase the expression of AhR and CYP genes in JEG-3 cells but increased CYP gene expression in two others. Pro-inflammatory conditions did not affect the response of the 3 cell lines to BaP with respect to the expression of CYP genes and changes in the mitochondrial function and NLRP3 inflammasome proteins. In addition, in HTR-8/SVneo cells, BaP increased IL-1ß secretion in the presence of hypoxia and poly(I:C). In conclusion, our results showed that BaP affected mitochondrial function in trophoblast cell lines by increasing ΔΨm. This increased ΔΨm may have rescued the trophoblast cells from activation of the NLRP3 inflammasome and apoptosis after BaP treatment. We also observed that different human trophoblast cell lines had cell type-dependent responses to BaP exposure under normoxia, hypoxia, or pro-inflammatory conditions.


Assuntos
Apoptose , Benzo(a)pireno , Sobrevivência Celular , Proteína 3 que Contém Domínio de Pirina da Família NLR , Placenta , Receptores de Hidrocarboneto Arílico , Trofoblastos , Humanos , Benzo(a)pireno/toxicidade , Placenta/efeitos dos fármacos , Placenta/citologia , Linhagem Celular , Feminino , Gravidez , Apoptose/efeitos dos fármacos , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Mitocôndrias/efeitos dos fármacos , Inflamação/induzido quimicamente , Hipóxia Celular/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
14.
J Colloid Interface Sci ; 665: 1054-1064, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579388

RESUMO

The rational design of morphology and heterogeneous interfaces for non-precious metal electrocatalysts is crucial in electrochemical water decomposition. In this paper, a bifunctional electrocatalyst (Ni/NiFe LDH), which coupling nickel with nickel-iron layer double hydroxide (NiFe LDH), is synthesized on carbon cloth. At current density of 10 mA cm-2, the Ni/NiFe LDH exhibits a low hydrogen evolution reaction (HER) overpotential of only 36 mV due to the accelerated electrolyte penetration, which is caused by superhydrophilic interface. Moreover, an alkaline electrolyzer is formed and provide a current density of 10 mA cm-2 with a voltage of only 1.49 V. It is confirmed by the density functional theory (DFT) that electron from the Ni layer is transferred to NiFe LDH layer, redistributing the local electron density around the heterogeneous phase interface. Thus, the Gibbs free energy for hydrogen adsorption is optimized. This work provides a promising strategy for the rational regulation of electrons at heterogeneous interfaces and the synthesis of flexible electrocatalysts.

15.
Angew Chem Int Ed Engl ; 63(25): e202403187, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38501218

RESUMO

Low capacity and poor cycle stability greatly inhibit the development of zinc-iodine batteries. Herein, a high-performance Zn-iodine battery has been reached by designing and optimizing both electrode and electrolyte. The Br- is introduced as the activator to trigger I+, and coupled with I+ forming interhalogen to stabilize I+ to achieve a four-electron reaction, which greatly promotes the capacity. And the Ni-Fe-I LDH nanoflowers serve as the confinement host to enable the reactions of I-/I+ occurring in the layer due to the spacious and stable interlayer spacing of Ni-Fe-I LDH, which effectively suppresses the iodine-species shuttle ensuring high cycling stability. As a result, the electrochemical performance is greatly enhanced, especially in specific capacity (as high as 350 mAh g-1 at 1 A g-1 far higher than two-electron transfer Zn-iodine batteries) and cycling performance (94.6 % capacity retention after 10000 cycles). This strategy provides a new way to realize high capacity and long-term stability of Zn-iodine batteries.

16.
Sci Total Environ ; 923: 171495, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38453087

RESUMO

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its derivative 6PPDQ have been detected in various environmental media, with harmful consequences for both ecosystems and biological health. However, the distribution of 6PPD and 6PPDQ in areas around e-waste recycling areas is currently unknown. We collected soil and dust samples from areas around a traditional e-waste recycling zone, an emerging recycling park, and a reference area. Higher levels of 6PPD were found in dust from residential areas around the traditional e-waste recycling zone compared to the reference area (median: 108.99 versus 33.57 ng/g, P < 0.01). Lower levels of 6PPDQ were detected in dust samples from around the emerging e-waste recycling parks compared to traditional e-waste recycling zones (median: 15.40 versus 46.37 ng/g, P < 0.05). The median concentrations of 6PPD and 6PPDQ were higher in the dust samples than in the soil samples (P < 0.001). The concentrations of 6PPD and 6PPDQ in the dust and soil varied seasonally, with the highest total concentrations occurring in the winter. Results from a multiple linear regression analysis indicate that 6PPDQ is negatively correlated with temperature and positively correlated with 6PPD, O3, and radiation. This study confirms that e-waste is a potential contributor to 6PPD and 6PPDQ. In residential areas, 6PPD and 6PPDQ are more likely to accumulate in dust than in soil. The emerging e-waste recycling parks have greatly improved the local 6PPDQ pollution situation. Further studies are necessary to understand the distribution of newly found substances in various settings.


Assuntos
Poeira , Resíduo Eletrônico , Poeira/análise , Solo , Resíduo Eletrônico/análise , Ecossistema , Reciclagem/métodos , China
18.
Sci Total Environ ; 914: 169972, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211872

RESUMO

Ubiquitous non-persistent endocrine disrupting chemicals (EDCs) have inconsistent associations with cardiometabolic traits. Additionally, large-scale genome-wide association studies (GWASs) have yielded many genetic risk variants for cardiometabolic traits and diseases. This study aimed to investigate the associations between a wide range of EDC exposures (parabens, bisphenols, and phthalates) and 14 cardiometabolic traits and whether these are moderated by their respective genetic risk scores (GRSs). Data were from 1074 participants aged 18 years or older of the Lifelines Cohort Study, a large population-based biobank. GRSs for 14 cardiometabolic traits were calculated based on genome-wide significant common variants from recent GWASs. The concentrations of 15 EDCs in 24-hour urine were measured by isotope dilution liquid chromatography tandem mass spectrometry technology. The main effects of trait-specific GRSs and each of the EDC exposures and their interaction effects on the 14 cardiometabolic traits were examined in multiple linear regression. The present study confirmed significant main effects for all GRSs on their corresponding cardiometabolic trait. Regarding the main effects of EDC exposures, 26 out of 280 EDC-trait tests were significant with explained variances ranging from 0.43 % (MMP- estimated glomerular filtration rate (eGFR)) to 2.37 % (PrP-waist-hip ratio adjusted body mass index (WHRadjBMI)). We confirmed the association of MiBP and MBzP with WHRadjBMI and body mass index (BMI), and showed that parabens, bisphenol F, and many other phthalate metabolites significantly contributed to the variance of WHRadjBMI, BMI, high-density lipoprotein (HDL), eGFR, fasting glucose (FG), and diastolic blood pressure (DBP). Only one association between BMI and bisphenol F was nominally significantly moderated by the GRS explaining 0.36 % of the variance. However, it did not survive multiple testing correction. We showed that non-persistent EDC exposures exerted effects on BMI, WHRadjBMI, HDL, eGFR, FG, and DBP. However no evidence for a modulating role of GRSs was found.


Assuntos
Compostos Benzidrílicos , Doenças Cardiovasculares , Disruptores Endócrinos , Fenóis , Humanos , Estudos de Coortes , Disruptores Endócrinos/toxicidade , Estratificação de Risco Genético , Parabenos/análise , Estudo de Associação Genômica Ampla , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/epidemiologia
19.
Nat Immunol ; 25(2): 282-293, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38172257

RESUMO

Preserving cells in a functional, non-senescent state is a major goal for extending human healthspans. Model organisms reveal that longevity and senescence are genetically controlled, but how genes control longevity in different mammalian tissues is unknown. Here, we report a new human genetic disease that causes cell senescence, liver and immune dysfunction, and early mortality that results from deficiency of GIMAP5, an evolutionarily conserved GTPase selectively expressed in lymphocytes and endothelial cells. We show that GIMAP5 restricts the pathological accumulation of long-chain ceramides (CERs), thereby regulating longevity. GIMAP5 controls CER abundance by interacting with protein kinase CK2 (CK2), attenuating its ability to activate CER synthases. Inhibition of CK2 and CER synthase rescues GIMAP5-deficient T cells by preventing CER overaccumulation and cell deterioration. Thus, GIMAP5 controls longevity assurance pathways crucial for immune function and healthspan in mammals.


Assuntos
Ceramidas , Proteínas de Ligação ao GTP , Animais , Humanos , Longevidade/genética , Células Endoteliais/metabolismo , Mamíferos/metabolismo
20.
Environ Res ; 247: 118201, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220074

RESUMO

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone) has received extensive attention due to its ubiquitous distribution and potential toxicity. However, the distribution characteristics of 6PPD-quinone in dust from e-waste recycling areas and the consequential health risks to children are unclear. A total of 183 dust samples were collected from roads (n = 40), homes (n = 91), and kindergartens (n = 52) in Guiyu (the e-waste-exposed group) and Haojiang (the reference group) from 2019 to 2021. The results show that the concentrations of 6PPD-quinone in kindergarten and house dust from the exposed group were significantly higher than those from the reference group (P < 0.001). These findings show that e-waste may be another potential source of 6PPD-quinone, in addition to rubber tires. The exposure risk of 6PPD-quinone in children was assessed using their daily intake. The daily intake of 925 kindergarten children was calculated using the concentration of 6PPD-quinone in kindergarten dust. The daily intake of 6PPD-quinone via ingestion was approximately five orders of magnitude higher than via inhalation. Children in the exposed group had a higher exposure risk to 6PPD-quinone than the reference group. A higher daily intake of 6PPD-quinone from kindergarten dust was associated with a lower BMI and a higher frequency of influenza and diarrhea in children. This study reports the distribution of 6PPD-quinone in an e-waste recycling town and explores the associated health risks to children.


Assuntos
Benzoquinonas , Exposição Ambiental , Influenza Humana , Criança , Humanos , Influenza Humana/epidemiologia , Índice de Massa Corporal , Poeira , Quinonas , Diarreia/induzido quimicamente , Diarreia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA