Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 869: 161879, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36716871

RESUMO

Large amounts of Fenton sludge and waste activated sludge (WAS) are mixed as ferric sludge (FS) in most industrial wastewater treatment plants. The treatment of such waste represents a challenge and quantity-dependent cost, so that a reliable way for FS waste reduction is required. In this study, we develop a facile acid-assisted hydrothermal treatment (HT) for the cost-efficient treatment of hazardous FS waste. Sulfuric acid was dosed at 0.25 mL/g dry solid (DS) to the HT process, which significantly increased the total solid mass reduction (TMR) by 25.1 % and dry mass reduction (DMR) by 104.4 %. The participation of sulfuric acid during the HT process changed the HT reaction pathway from dehydration to demethylation based on the analysis of the derivative thermogravimetric and Van Krevelen diagram. The addition of sulfuric acid improved the release of Fe from FS by 52.9 %, which contributed to the DMR. During the acid-assisted HT, Fe(III) was effectively reduced to Fe(II) within the produced hydrochar, which can be recycled for the Fenton reaction during the degradation of actual industrial wastewater such as pharmaceutical wastewater. Moreover, Sulfuric acid facilitated the generation of sulfonated hydrochar, which was efficient as an adsorbent for the complete removal of some metals such as Cu(II) - cation metal (98.8 %) and Cr(VI) - anion metal (99.9 %). This study firstly provides a novel and reliable approach for hazardous FS reduction and pointed out the recycling of hydrochar as the supplement for the Fenton reaction and adsorbents for some hazardous heavy metals.

2.
Bioresour Technol ; 361: 127754, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35952862

RESUMO

In this study, the combination of dielectric barrier discharge plasma (DBD) with calcium peroxide (CaO2) achieved significant synergistic effects in promoting hydrolysis of waste activated sludge (WAS) and short-chain fatty acid (SCFA) production during anaerobic fermentation. Compared with the control, DBD/CaO2 pretreatment increased SCFA production by 116 %, acetic acid ratio by 39 %, and sludge reduction by 30 % under the optimal conditions (discharge power = 76.5 W, CaO2 dosage = 0.05 g/g VSS). Mechanism investigations elucidated that DBD/CaO2 enhanced the generation of •OH, 1O2, and •O2-, synergistically promoted decomposing extracellular polymeric substances (EPS), lysing cells, releasing biodegradable substances, and enhancing acetic acid-enriched SCFA accumulation from fermentation. Meanwhile, Illumina MiSeq sequencing analysis revealed that the enrichment of hydrolytic and SCFAs-forming bacteria and the decrease in SCFAs-consuming bacteria by DBD/CaO2 treatment also contributed. This work provides an effective method to boost the SCFA production from WAS fermentation.


Assuntos
Ácidos Graxos Voláteis , Esgotos , Anaerobiose , Fermentação , Concentração de Íons de Hidrogênio , Peróxidos
3.
Nanomaterials (Basel) ; 12(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35159742

RESUMO

Nitrite is common inorganic poison, which widely exists in various water bodies and seriously endangers human health. Therefore, it is very necessary to develop a fast and online method for the detection of nitrite. In this paper, we prepared an electrochemical sensor for highly sensitive and selective detection of nitrite, based on AuNPs/CS/MXene nanocomposite. The characterization of the nanocomposite was demonstrated by scanning electron microscopy (SEM), a transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Under the optimized conditions, the fabricated electrode showed good performance with the linear range of 0.5-335.5 µM and 335.5-3355 µM, the limit of detection is 69 nM, and the sensitivity is 517.8 and 403.2 µA mM-1 cm-2. The fabricated sensors also show good anti-interference ability, repeatability, and stability, and have the potential for application in real samples.

4.
J Hazard Mater ; 423(Pt A): 126973, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34461533

RESUMO

The reuse of waste polyvinyl chloride (PVC) has drawn much attention as it can reduce plastic waste and associated pollution, and provide valuable raw materials and products. In this study, sulfonated PVC-derived hydrochar (HS-PVC) was synthesized by two-stage hydrothermal treatment (HT) and sulfonation, and shown to be a versatile adsorbent. The removal of Cu(II) cations and Cr(VI) anions using HS-PVC reached 81.2 ± 1.6% and 60.3 ± 3.8%, respectively. The first stage of HT was crucial for the dichlorination of PVC and the formation of an aromatic structure. This stage guaranteed the introduction of -SO3H onto PVC-derived hydrochar through subsequent sulfonation. HT intensities (i.e., temperature and time) and sulfonation intensity strongly determined the adsorption capacity of HS-PVC. Competitive adsorption between Cu(II) and Cr(VI) onto HS-PVC was demonstrated by binary and preloading adsorption. The proposed Cu(II) cations adsorption mechanism was electrostatic adsorption, while Cr(VI) were possibly complexed by the phenolic -OH and reduced to Cr(III) cations by CC groups in HS-PVC. In addition, HS-PVC derived from PVC waste pipes performed better than PVC powder for Cu(II) and Cr(VI) removal (>90%). This study provides an efficient method for recycling waste PVC and production of efficient adsorbents.


Assuntos
Cloreto de Polivinila , Poluentes Químicos da Água , Adsorção , Ânions , Cátions , Cromo/análise , Cinética , Poluentes Químicos da Água/análise
5.
Aquac Int ; 29(6): 2681-2711, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539102

RESUMO

With the continuous expansion of aquaculture scale and density, contemporary aquaculture methods have been forced to overproduce resulting in the accelerated imbalance rate of water environment, the frequent occurrence of fish diseases, and the decline of aquatic product quality. Moreover, due to the fact that the average age profile of agricultural workers in many parts of the world are on the higher side, fishery production will face the dilemma of shortage of labor, and aquaculture methods are in urgent need of change. Modern information technology has gradually penetrated into various fields of agriculture, and the concept of intelligent fish farm has also begun to take shape. The intelligent fish farm tries to deal with the precise work of increasing oxygen, optimizing feeding, reducing disease incidences, and accurately harvesting through the idea of "replacing human with machine," so as to liberate the manpower completely and realize the green and sustainable aquaculture. This paper reviews the application of fishery intelligent equipment, IoT, edge computing, 5G, and artificial intelligence algorithms in modern aquaculture, and analyzes the existing problems and future development prospects. Meanwhile, based on different business requirements, the design frameworks for key functional modules in the construction of intelligent fish farm are proposed.

6.
Biosensors (Basel) ; 11(9)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34562924

RESUMO

A SPEC/AuNPs/PMB modified electrode was prepared by electrodeposition and electro-polymerization. The electrochemical behavior of reduced nicotinamide adenine dinucleotide (NADH) on the surface of the modified electrode was studied by cyclic voltammetry. A certain amount of substrate and glutamate dehydrogenase (GLDH) were coated on the modified electrode to form a functional enzyme membrane. The ammonia nitrogen in the water sample could be calculated indirectly by measuring the consumption of NADH in the reaction. The results showed that the strength of electro-catalytic current signal was increased by two times; the catalytic oxidation potential was shifted to the left by 0.5 V, and the anti-interference ability of the sensor was enhanced. The optimum substrate concentration and enzyme loading were determined as 1.3 mM NADH, 28 mM α-Ketoglutarate and 2.0 U GLDH, respectively. The homemade ceramic heating plate controlled the working electrode to work at 37 °C. A pH compensation algorithm based on piecewise linear interpolation could reduce the measurement error to less than 3.29 µM. The biosensor exhibited good linearity in the range of 0~300 µM with a detection limit of 0.65 µM NH4+. Compared with standard Nessler's method, the recoveries were 93.71~105.92%. The biosensor was found to be stable for at least 14 days when refrigerated and sealed at 4 °C.


Assuntos
Compostos de Amônio , Aquicultura , Monitoramento Ambiental/instrumentação , Poluentes Químicos da Água/análise , Técnicas Biossensoriais , Catálise , Eletrodos , Monitoramento Ambiental/métodos , Ouro , Nanopartículas Metálicas , NAD , Oxirredução
7.
Anal Methods ; 13(36): 4090-4098, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34554148

RESUMO

A novel "on-off" fluorescent probe was synthesized for highly sensitive and ultra-trace determination of ammonia nitrogen in aquaculture water. Ammonium can react with formaldehyde and sodium hydroxide to form a ring substance (urotropine), which shows no fluorescence signal. Palmatine hydrochloride (PAL) can enter the hydrophobic cavity of cucurbit[7]uril (CB[7]), eventually forming a 1 : 1 host guest complex called PAL@CB[7] under neutral or acidic conditions, which has strong green fluorescence with the maximum excitation (λex) wavelength at 343 nm, and the maximum emission (λem) wavelength at 500 nm, while urotropine has a fluorescence quenching effect on the fluorescence enhancement system of PAL@CB[7]. Therefore, a fluorescent chemosensor based on PAL@CB[7] and the reaction of ammonia nitrogen with formaldehyde was developed. The results indicate that the linearity range and the limit of detection of the proposed method are 1-300 µg L-1 with a good correlation coefficient (r2 = 0.9966) and 1.8 × 10-2 µg L-1, respectively. Under the optimal conditions, the method was employed for the detection of ammonia nitrogen in real aquaculture water samples, revealing high selectivity and sensitivity. In the future, the combination of the "on-off" fluorescence method, a portable hardware system and intelligent algorithms will provide technology support for the design of on-line sensors for measuring ammonia nitrogen in aquaculture water.


Assuntos
Amônia , Corantes Fluorescentes , Aquicultura , Hidrocarbonetos Aromáticos com Pontes , Imidazóis , Nitrogênio , Espectrometria de Fluorescência , Água
8.
Nanomaterials (Basel) ; 11(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34443726

RESUMO

In this paper, a new nanocomposite AuNPs/MXene/ERGO was prepared for sensitive electrochemical detection of nitrite. The nanocomposite was prepared by a facile one-step electrodeposition, HAuCl4, GO and MXene mixed in PBS solution with the applied potential of -1.4 V for 600 s. The modified material was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and cyclic voltammetry (CV). The electrochemical behavior of nitrite at the modified electrode was performed by CV and chronoamperometry. The AuNPs/MXene/ERGO/GCE showed a well-defined oxidation peak for nitrite at +0.83 V (Vs. Ag/AgCl) in 0.1 M phosphate buffer solution (pH 7). The amperometric responses indicated the sensor had linear ranges of 0.5 to 80 µM and 80 to 780 µM with the LOD (0.15 µM and 0.015 µM) and sensitivity (340.14 and 977.89 µA mM-1 cm-2), respectively. Moreover, the fabricated sensor also showed good selectivity, repeatability, and long-term stability with satisfactory recoveries for a real sample. We also propose the work that needs to be done in the future for material improvements in the conclusion.

9.
Environ Res ; 201: 111488, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34153334

RESUMO

Waste activated sludge (WAS) and animal manure are two significant reservoirs of glucocorticoids (GCs) in the environment. However, GC degradation during anaerobic digestion (AD) of WAS or animal manure has rarely been investigated. In this study, co-fermentation of WAS and animal manure was conducted to investigate the performance of AD in controlling GC dissemination. Effects of manure type on GC degradation and sludge acidification were investigated. The results showed that co-fermentation of WAS and chicken manure (CM) significantly enhanced the degradation of hydrocortisone (HC) to 99%, betamethasone (BT) to 99%, fluocinolone acetonide (FA) to 98%, and clobetasol propionate (CP) to 82% in 5 days with a mixing ratio of 1:1 (g TS sludge/g dw manure) at 55 °C and initial pH of 7. Simultaneously, sludge reduction was increased by 30% and value-added volatile fatty acid (VFA) production was improved by 40%. Even a high GC content of biomass (3.6 mg/g TS) did not impact both sludge hydrolysis and acidification. The amendment of WAS with CM increased soluble organic carbon, Ca2+, and relative abundance of anaerobes (Eubacterium) associated with organic compound degradation. Furthermore, 44 transformation products of HC, BT, FA, and CP with lower lipophilicity and toxicity were identified, indicating possible degradation pathways including hydroxylation, ketonization, ring cleavage, defluorination, hydrogenation, methylation, and de-esterification. Overall, this study provides a practical way to control GC pollution and simultaneously promote waste reduction and VFA production. Animal manure type as an overlooked factor for influencing co-fermentation performance and pollutant degradation was also highlighted.


Assuntos
COVID-19 , Esgotos , Anaerobiose , Animais , Reatores Biológicos , Ácidos Graxos Voláteis , Fermentação , Glucocorticoides , Humanos , Concentração de Íons de Hidrogênio , Esterco , SARS-CoV-2
10.
Bioresour Technol ; 319: 124124, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32977090

RESUMO

Lactic acid (LA), a versatile platform molecule, can be fermented from organic wastes, such as food waste and waste activated sludge. In this study, an efficient approach using salt, a component of food waste as an additive, was proposed to increase LA production. The LA productivity was increased at 10 g NaCl/L and optical pure L-lactate was obtained at 30 g NaCl/L. The enhancement of LA was in accordance with the increased solubilization and the critical hydrolase activities under saline conditions. Moreover, high salinity (30-50 g NaCl/L) changed the common conversion of LA to volatile fatty acids. In addition, the key LA bacteria genera (Bacillus, Enterococcus, Lactobacillus) were selectively enriched under saline conditions. Strong correlations between salinity and functional genes for L-LA production were also observed. This study provides a practical way for the enrichment of L-LA with high optical activity from organic wastes.


Assuntos
Microbiota , Eliminação de Resíduos , Ácidos Graxos Voláteis , Fermentação , Alimentos , Ácido Láctico , Salinidade , Esgotos
11.
Bioresour Technol ; 302: 122881, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32014732

RESUMO

In this study, a reliable approach using ammonia nitrogen was proposed to increase lactate production during semi-continuous food waste (FW) fermentation under mesophilic conditions. Both free ammonia nitrogen (FAN) and ammonium ion (NH4+-N) were present in mesophilic reactors, with a wide FAN/NH4+-N ratio variation due to the intermittent pH control. The investigation of responsible mechanisms revealed that the increased production yield of LA was associated with the acceleration of solubilization, hydrolysis, glycolysis and acidification. The presence of FAN and NH4+-N in proper concentrations increased lactate production by 2.4 folds and recovered lactate production to 24.5 g COD/L from low rate control reactor (9.6 g COD/L) under mesophilic conditions. Furthermore, the microorganisms responsible for LA accumulation (Bavariicoccus, Enterococcus, Bifidobacterium and Corynebacterium) were selectively enriched, and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways associated with carbohydrate transport and LA production were enhanced in nitrogen fed reactors.


Assuntos
Amônia , Eliminação de Resíduos , Reatores Biológicos , Fermentação , Alimentos , Ácido Láctico
12.
Bioresour Technol ; 300: 122709, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31901771

RESUMO

Bio-valorization of organic waste streams, such as food waste and waste activated sludge, to lactic acid (LA) has recently drawn much attention. It offers an opportunity for resource recovery, alleviates environmental issues and potentially turns a profit. In this study, both stable and high LA yield (0.72 ± 0.15 g/g total chemical oxygen demand) and productivity rate (0.53 g/L•h) were obtained through repeated batch fermentation. Moreover, stable solubilization and increase in the critical hydrolase activities were achieved. Depletions of ammonia and phosphorus were correlated with the LA production. The relative abundance of the key LA bacteria genera (i.e., Alkaliphilus, Dysgonomonas, Enterococcus and Bifidobacterium) stabilized in the repeated batch reactor at a higher level (44.5 ± 2.53%) in comparison with the batch reactor (26.2 ± 4.74%). This work show a practical way for the sustainable valorization of organic wastes to LA by applying the repeated batch mode during biological treatment.


Assuntos
Eliminação de Resíduos , Esgotos , Reatores Biológicos , Fermentação , Alimentos , Ácido Láctico
13.
Sensors (Basel) ; 20(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861855

RESUMO

Nitrite and nitrate are widely found in various water environments but the potential toxicity of nitrite and nitrate poses a great threat to human health. Recently, many methods have been developed to detect nitrate and nitrite in water. One of them is to use graphene-based materials. Graphene is a two-dimensional carbon nano-material with sp2 hybrid orbital, which has a large surface area and excellent conductivity and electron transfer ability. It is widely used for modifying electrodes for electrochemical sensors. Graphene based electrochemical sensors have the advantages of being low cost, effective and efficient for nitrite and nitrate detection. This paper reviews the application of graphene-based nanomaterials for electrochemical detection of nitrate and nitrite in water. The properties and advantages of the electrodes were modified by graphene, graphene oxide and reduced graphene oxide nanocomposite in the development of nitrite sensors are discussed in detail. Based on the review, the paper summarizes the working conditions and performance of different sensors, including working potential, pH, detection range, detection limit, sensitivity, reproducibility, repeatability and long-term stability. Furthermore, the challenges and suggestions for future research on the application of graphene-based nanocomposite electrochemical sensors for nitrite detection are also highlighted.

14.
Water Res ; 155: 225-232, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30851593

RESUMO

Hazardous waste dewatering is important for volume reduction and further treatment. Hazardous organic wastes with low ratio of free to bound water, and low flash point are difficult to dewater and pose an explosion risk for conventional thermal drying. Here, we develop a facile one-pot, alkali-assisted hydrothermal treatment (AHT) method for cost-efficient hazardous waste dewatering, dry mass minimization and volume reduction. Wet paint sludge (WPS), a hazardous organic waste, was reduced (79% by total weight and 52% by dry mass) by dewatering through AHT hydrophobic modification, and the product was nonflammable. Conversion of bound water to free water enhanced WPS dissolution for further decomposition. Alkali was critical for boosting ether demethylation in the solid phase, and cleavage of ethers forming alcohols that facilitated transfer of solid mass into the liquid phase. Polar functional groups were eliminated through AHT, which increased the relative abundance of hydrophobic functional groups on the surface of solid residues and promoted dewatering. We also demonstrate that AHT can be widely adapted and scaled up to treat various hazardous organic waste streams, which is of significant industrial and environmental interest.


Assuntos
Resíduos Perigosos , Eliminação de Resíduos Líquidos , Álcalis , Dessecação , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...