Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging Clin Exp Res ; 36(1): 30, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334839

RESUMO

BACKGROUND: Widespread attention has been given to the detrimental effects of obesity on cognitive function. However, there is no evidence on the connection between low cognitive performance and the WWI (weight-adjusted waist index). This study looked into the connection between poor cognitive performance and the WWI in senior Americans. METHODS: A cross-sectional research study was carried out with information from the NHANES 2011-2014. With multivariate linear regression models, the pertinence between the WWI and low cognitive function in persons older than 60 years was examined. The nonlinear link was described using threshold effect analyses and fitted smoothed curves. Interaction tests and subgroup analysis were also conducted. RESULTS: The study had 2762 individuals in all, and subjects with higher WWI values were at greater risk for low cognitive function. In the completely adjusted model, the WWI was positively connected with low cognitive performance assessed by CERAD W-L (OR = 1.22, 95% CI 1.03-1.45, p = 0.0239), AFT (OR = 1.30, 95% CI 1.09-1.54, p = 0.0029), and DSST (OR = 1.59, 95% CI 1.30-1.94, p < 0.0001). The effect of each subgroup on the positive correlation between the WWI and low cognitive performance was not significant. The WWI and low cognitive performance as determined by CERAD W-L and AFT had a nonlinear connection (log-likelihood ratio < 0.05). CONCLUSION: Among older adults in the United States, the risk of low cognitive performance may be positively related to the WWI.


Assuntos
Cognição , Obesidade , Humanos , Idoso , Estudos Transversais , Inquéritos Nutricionais , Modelos Lineares , Obesidade/epidemiologia
2.
Aging (Albany NY) ; 15(23): 14210-14241, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38085668

RESUMO

Cuproptosis is a recently reported new mode of programmed cell death which might be a potential co-pathogenesis of three kinds of primary cardiomyopathy. However, no investigation has reported a clear relevance between primary cardiomyopathy and cuproptosis. In this study, the differential cuproptosis-related genes (CRGs) shared by three kinds of primary cardiomyopathy were identified in training sets. As a result, four CRGs shared by three kinds of primary cardiomyopathy were acquired and they were mainly related to biological processes such as cell death and immuno-inflammatory response through differential analysis, correlation analysis, GSEA, GSVA and immune cell infiltration analysis. Then, three key CRGs (K-CRGs) with high diagnostic value were identified by LASSO regression. The results of nomogram, machine learning, ROC analysis, calibration curve and decision curve indicated that the K-CRGs exhibited outstanding performance in the diagnosis of three kinds of primary cardiomyopathy. After that, in each disease, two molecular subtypes clusters were distinguished. There were many differences between different clusters in the biological processes associated with cell death and immunoinflammation and K-CRGs had excellent molecular subtype identification efficacy. Eventually, results from validation datasets and in vitro experiments verified the role of K-CRGs in diagnosis of primary cardiomyopathy, identification of primary cardiomyopathic molecular subtypes and pathogenesis of cuproptosis. In conclusion, this study found that cuproptosis might be the potential common pathogenesis of three kinds of primary cardiomyopathy and K-CRGs might be promising biomarkers for the diagnosis and molecular subtypes identification of primary cardiomyopathy.


Assuntos
Apoptose , Cardiomiopatias , Humanos , Morte Celular , Calibragem , Biologia Computacional , Cardiomiopatias/genética
3.
ACS Appl Mater Interfaces ; 15(35): 41504-41515, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37611062

RESUMO

As for the conversion-type iron fluoride (FeF3) cathode material with multielectron reactions for lithium-ion batteries (LIBs), sluggish reaction kinetics and low electrical conductivity pose certain limitations for the long-lasting reversible conversion processes. Herein, the three-dimensional porous nitrogen-doped carbon matrix in situ anchoring FeF3 nanocavities coated by graphitized carbon (FeF3/GC) are rationally prepared. Through the Kirkendall effect, the low-temperature fluorination of NF3 enables the resultant hollow FeF3 nanoparticles to possess a large number of lithium storage cavities and outer graphitized carbon structure, further effectively buffering the expansion of volume. The FeF3/GC cathode delivers a superior discharge capacity of 504.2 mAh g-1 after 1200 cycles at 1000 mA g-1, with a capacity decay rate of only 0.01% per cycle. Even at a rate of 5000 mA g-1, the composite cathode still delivers a discharge capacity of 309.6 mAh g-1. Impressively, the existence of graphitized carbon and the short Li+ diffusion length ensure fast electron/ion transfer, which significantly enhances the conversion reaction kinetics. This study aims to provide a promising strategy for the efficiency enhancement of multielectron cathode conversion reactions for LIBs.

4.
BMC Cardiovasc Disord ; 23(1): 293, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296380

RESUMO

BACKGROUND: In recent years, the incidence of diabetes mellitus has been increasing annually, and cardiovascular complications secondary to diabetes mellitus have become the leading cause of death in diabetic patients. Considering the high incidence of type 2 diabetes (T2DM) combined with cardiovascular disease (CVD), some new hypoglycemic agents with cardiovascular protective effects have attracted extensive attention. However, the specific role of these regimens in ventricular remodeling remains unknown. The purpose of this network meta-analysis was to compare the effects of sodium glucose cotransporter type 2 inhibitor (SGLT-2i), glucagon-like peptide 1 receptor agonist (GLP-1RA) and dipeptidyl peptidase-4 inhibitor (DPP-4i) on ventricular remodeling in patients with T2DM and/or CVD. METHODS: Articles published prior to 24 August 2022 were retrieved in four electronic databases: the Cochrane Library, Embase, PubMed, and Web of Science. This meta-analysis included randomized controlled trials (RCTs) and a small number of cohort studies. The differences in mean changes of left ventricular ultrasonic parameters between the treatment and control groups were compared. RESULTS: A total of 31 RCTs and 4 cohort studies involving 4322 patients were analyzed. GLP-1RA was more significantly associated with improvement in left ventricular end-systolic diameter (LVESD) [MD = -0.38 mm, 95% CI (-0.66, -0.10)] and LV mass index (LVMI) [MD = -1.07 g/m2, 95% CI (-1.71, -0.42)], but significantly decreased e' [MD = -0.43 cm/s 95% CI (-0.81, -0.04)]. DPP-4i was more strongly associated with improvement in e' [MD = 3.82 cm/s, 95% CI (2.92,4.7)] and E/e'[MD = -5.97 95% CI (-10.35, -1.59)], but significantly inhibited LV ejection fraction (LVEF) [MD = -0.89% 95% CI (-1.76, -0.03)]. SGLT-2i significantly improved LVMI [MD = -0.28 g/m2, 95% CI (-0.43, -0.12)] and LV end-diastolic diameter (LVEDD) [MD = -0.72 ml, 95% CI (-1.30, -0.14)] in the overall population, as well as E/e' and SBP in T2DM patients combined with CVD, without showing any negative effect on left ventricular function. CONCLUSION: The results of the network meta-analysis provided high certainty to suggest that SGLT-2i may be more effective in cardiac remodeling compared to GLP-1RA and DPP-4i. While GLP-1RA and DPP-4i may have a tendency to improve cardiac systolic and diastolic function respectively. SGLT-2i is the most recommended drug for reversing ventricular remodeling in this meta-analysis.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Humanos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes/farmacologia , Metanálise em Rede , Inibidores de Proteases/farmacologia , Remodelação Ventricular
5.
Perfusion ; 38(3): 557-566, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35102779

RESUMO

BACKGROUND: Atherosclerosis (AS), one of the leading causes of deaths and disabilities, is a kind of vascular disease of lipid disorders and chronic inflammation. Guanxinping (GXP) has been administrated in the treatment of AS for nearly 20 years with satisfying clinical response. This study aimed to explore its underlying mechanisms of anti-atherosclerotic effect in AS. METHODS: Male ApoE-/- mice were randomized into five groups and fed with either standard diet (control group, CON) or high-fat diet (HFD) for 12 weeks. HFD mice were further divided randomly and either fed continually with HFD as a model group, or atorvastatin (ATO), or low-dose GXP (LGXP), or high-dose GXP (HGXP). After 12 weeks, the body weight, serum triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), and low-density lipoprotein cholesterol (LDL-c) were detected. Moreover, serum inflammation cytokines including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß) concentrations were measured. The structure of aortic tissues was examined by hematoxylin-eosin staining. The mRNA expression of TNF-α, IL-6, and IL-1ß were assessed by qPCR. The protein expressions of ICAM-1, VCAM-1, MCP-1, IL-6, IL-1ß, p38MAPK, ERK1/2, JNK, IκB-α, and NF-κBp65 in the aorta were also detected. RESULTS: GXP treatment reduced serum TG, TC, and LDL-c levels in ApoE-/- mice. Moreover, GXP reduced lipid accumulation in the aorta of ApoE-/- mice, induced by HFD. Furthermore, GXP ameliorated the aorta morphological damage and reduced the serum TNF-α, IL-6, and IL-1ß levels. GXP also attenuated the protein expression of ICAM-1, VCAM-1, MCP-1, IL-6, IL-1ß, p38MAPK, ERK1/2, JNK, and NF-κBp65, whereas it increased the IκBα level in aortic tissues of ApoE-/- mice. CONCLUSIONS: Our results show that GXP could ameliorate atherosclerosis, which is mediated by inhibition of the MAPK/NF-κB signaling pathway in ApoE-/- mice. This study provides evidence that GXP might be a promising drug for the treatment of AS.


Assuntos
Aterosclerose , NF-kappa B , Masculino , Camundongos , Animais , NF-kappa B/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/farmacologia , Molécula 1 de Adesão Intercelular/uso terapêutico , Sistema de Sinalização das MAP Quinases , Interleucina-6 , Fator de Necrose Tumoral alfa , LDL-Colesterol/metabolismo , LDL-Colesterol/farmacologia , LDL-Colesterol/uso terapêutico , Molécula 1 de Adesão de Célula Vascular/metabolismo , Molécula 1 de Adesão de Célula Vascular/farmacologia , Molécula 1 de Adesão de Célula Vascular/uso terapêutico , Aterosclerose/genética , Transdução de Sinais , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas E/farmacologia , Camundongos Endogâmicos C57BL
6.
Artigo em Inglês | MEDLINE | ID: mdl-35656471

RESUMO

The traditional Chinese medicine (TCM) formula, Sheng Huang Chong Ji (SHCJ) is largely applied for treating Alzheimer's disease (AD), but not much is known regarding its active compounds, molecular targets, and mechanism of action. The current study aimed to predict the potential molecular mechanism of SHCJ against AD based on network pharmacology combined with in vitro validation. Using public databases, SHCJ's active compounds, their potential targets, and AD-related genes were screened, while Cytoscape Version 3.7.2 was used to build protein-protein interaction (PPI) and compound-disease-target (C-D-T) networks. Analysis of enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) terms was then carried out in R 4.0.2, including associated packages. Subsequently, molecular docking analysis was performed with AutoDock Vina 1.1.2, with intro experiments involving SH-SY5Y cells used to further investigate the mechanism of SHCJ against AD. Finally, a total of 56 active compounds of SHCJ and 192 SHCJ-AD-related targets were identified. Quercetin was identified as the top potential candidate agent. HSP90AA1, AKT1, and MAPK1 represent potential therapeutic targets. The PI3K-Akt signaling pathway potentially represents a core one mediating the effects of SHCJ against AD. Additionally, molecular docking analysis indicated that quercetin could combine well with AKT1 and multiple apoptosis-related target genes. During cell experiments, a significant increase in cell viability along with a decrease in Aß 25-35-induced apoptosis was observed after treatment with SHCJ. Furthermore, SHCJ significantly increased the phosphorylation of PI3K and Akt while reversing Aß 25-35-induced apoptosis-related protein expression downregulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...