Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
1.
World J Gastrointest Surg ; 16(6): 1791-1802, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38983329

RESUMO

BACKGROUND: Metastatic colorectal cancer (mCRC) is a common malignancy whose treatment has been a clinical challenge. Cancer-specific survival (CSS) plays a crucial role in assessing patient prognosis and treatment outcomes. However, there is still limited research on the factors affecting CSS in mCRC patients and their correlation. AIM: To predict CSS, we developed a new nomogram model and risk grading system to classify risk levels in patients with mCRC. METHODS: Data were extracted from the United States Surveillance, Epidemiology, and End Results database from 2018 to 2023. All eligible patients were randomly divided into a training cohort and a validation cohort. The Cox proportional hazards model was used to investigate the independent risk factors for CSS. A new nomogram model was developed to predict CSS and was evaluated through internal and external validation. RESULTS: A multivariate Cox proportional risk model was used to identify independent risk factors for CSS. Then, new CSS columns were developed based on these factors. The consistency index (C-index) of the histogram was 0.718 (95%CI: 0.712-0.725), and that of the validation cohort was 0.722 (95%CI: 0.711-0.732), indicating good discrimination ability and better performance than tumor-node-metastasis staging (C-index: 0.712-0.732). For the training set, 0.533, 95%CI: 0.525-0.540; for the verification set, 0.524, 95%CI: 0.513-0.535. The calibration map and clinical decision curve showed good agreement and good potential clinical validity. The risk grading system divided all patients into three groups, and the Kaplan-Meier curve showed good stratification and differentiation of CSS between different groups. The median CSS times in the low-risk, medium-risk, and high-risk groups were 36 months (95%CI: 34.987-37.013), 18 months (95%CI: 17.273-18.727), and 5 months (95%CI: 4.503-5.497), respectively. CONCLUSION: Our study developed a new nomogram model to predict CSS in patients with synchronous mCRC. In addition, the risk-grading system helps to accurately assess patient prognosis and guide treatment.

2.
Am J Cancer Res ; 14(5): 2507-2522, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859852

RESUMO

Colorectal cancer (CRC) is among the most prevalent malignant tumors, known for its high heterogeneity. Although many treatments and medications are available, the long-term survival rate of CRC patients is far from satisfactory. Pyroptosis is closely related to tumor progression. This study aimed to identify pyroptosis-related genes (PRGs) and candidate biomarkers to predict the prognosis of CRC patients. Used bioinformatics, we identified PRGs and subsequently screened 288 co-expression genes between pyroptosis-related modules and differentially expressed genes in CRC. Among these hub genes, we selected the top 24 for further analysis and found that Radical S-Adenosyl Methionine Domain Containing 2 (RSAD2) was a novel biomarker associated with the progression of CRC. We developed a risk model for RSAD2, which proved to be an independent prognostic indicator. The receiver operator characteristic analysis showed that the model had an acceptable prognostic value for patients with CRC. In addition, RSAD2 also affects the tumor immune microenvironment and prognosis of CRC. We further validated RSAD2 expression in CRC patients using RT-qPCR and the role of RSAD2 in pyroptosis. Taken together, this study comprehensively assessed the expression and prognostic value of RSAD2 in patients with CRC. These findings may offer a new direction for early CRC screening and development of future immunotherapy strategies.

3.
Environ Sci Technol ; 58(25): 11193-11202, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38859757

RESUMO

Per- and poly fluoroalkyl substances (PFASs) are often encountered with nonaqueous phase liquid (NAPL) in the groundwater at fire-fighting and military training sites. However, it is unclear how PFASs affect the dechlorination performance of sulfidized nanoscale zerovalent iron (S-nFe0), which is an emerging promising NAPL remediation agent. Here, S-nFe0 synthesized with controllable S speciation (FeS or FeS2) were characterized to assess their interactions with PFASs and their dechlorination performance for trichloroethylene NAPL (TCE-NAPL). Surface-adsorbed PFASs blocked materials' reactive sites and inhibited aqueous TCE dechlorination. In contrast, PFASs-adsorbed particles with improved hydrophobicity tended to enrich at the NAPL-water interface, and the reactive sites were re-exposed after the PFASs accumulation into the NAPL phase to accelerate dechlorination. This PFASs-induced phenomenon allowed the materials to present a higher reactivity (up to 1.8-fold) with a high electron efficiency (up to 99%) for TCE-NAPL dechlorination. Moreover, nFe0-FeS2 with a higher hydrophobicity was more readily enriched at the NAPL-water interface and more reactive and selective than nFe0-FeS, regardless of coexisting PFASs. These results unveil that a small amount of yet previously overlooked coexisting PFASs can favor selective reductions of TCE-NAPL by S-nFe0, highlighting the importance of materials hydrophobicity and transportation induced by S and PFASs for NAPL remediation.


Assuntos
Ferro , Ferro/química , Poluentes Químicos da Água/química , Halogenação , Água Subterrânea/química
4.
Chemosphere ; 357: 141920, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636914

RESUMO

Antimony contamination from textile industries has been a global environmental concern and the existing treatment technologies could not reduce Sb(V) to meet the discharge standards. To overcome this shortcoming, ferric flocs were introduced to expedite the biological process for enhanced Sb(V) removal in wastewater treatment plant (WWTP). For this purpose, a series of laboratorial-scale sequential batch reactor activated sludge processes (SBRs) were applied for Sb(V) removal with varied reactor conditions and the transformation of Fe and Sb in SBR system was investigated. Results showed a significant improvement in Sb(V) removal and the 20 mg L-1 d-1 iron ions dosage and iron loss rate was found to be only 15.2%. The influent Sb(V) concentration ranging 153-612 µg L-1 was reduced to below 50 µg L-1, and the maximum Sb(V) removal rate of the enhanced system reached about 94.3%. Furthermore, it exhibited high stability of Sb(V) removal in the face of antimonate load, Fe strike and matrix change of wastewater. Sludge total Sb determination and capacity calculation revealed decreasing in Sb adsorption capacity and desorption without fresh Fe dosage. While sludge morphology analysis demonstrated the aging and crystallization of iron hydroxides. These results verify the distinct effects of fresh iron addition and iron aging on Sb(V) removal. High-throughput gene pyrosequencing results showed that the iron addition changed microbial mechanisms and effect Fe oxidized bacterial quantity, indicating Sb(V) immobilization achieved by microbial synergistic iron oxidation. The present study successfully established a simple and efficient method for Sb(V) removal during biological treatment, and the modification of biological process by iron supplement could provide insights for real textile wastewater treatment.


Assuntos
Antimônio , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Esgotos/química , Esgotos/microbiologia , Antimônio/química , Ferro/química , Adsorção , Indústria Têxtil , Compostos Férricos/química , Reatores Biológicos/microbiologia , Têxteis , Biodegradação Ambiental , Aerobiose
5.
Org Lett ; 26(16): 3401-3406, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38607850

RESUMO

Bisboronic esters are critical compounds in various research fields, including drug discovery, chemical biology, and material sciences. Currently, the bisboronic esters with reactive functional groups are difficult to synthesize; this is partially due to the lack of a robust method to produce these products with diverse structures and various functional groups at specific locations. To overcome this issue, this study introduced a Ni-catalysis approach to produce bisboronic esters efficiently via cross-coupling and homocoupling using readily available halogenated boronic esters as the starting material under mild reaction conditions. This newly developed strategy enables Csp2-Csp2, Csp3-Csp3, and Csp2-Csp3 couplings, demonstrating a broad substrate scope and excellent compatibility with various functional groups.

6.
Environ Sci Pollut Res Int ; 31(23): 33347-33359, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38676863

RESUMO

Black soldier fly larvae have been proven to reduce greenhouse gas emissions in the treatment of organic waste. However, the microbial mechanisms involved have not been fully understood. The current study mainly examined the dynamic changes of carbon and nitrogen, greenhouse gas emissions, the succession of microbial community structure, and changes in functional gene abundance in organic waste under larvae treatment and non-aeration composting. Thirty percent carbon and 55% nitrogen in the organic waste supplied were stored in larvae biomass. Compared to the non-aeration composting, the larvae bioreactor reduced the proportion of carbon and nitrogen converted into greenhouse gases (CO2, CH4, and N2O decreased by 62%, 87%, and 95%, respectively). 16S rRNA sequencing analysis indicated that the larvae bioreactor increased the relative abundance of Methanophaga, Marinobacter, and Campylobacter during the bioprocess, enhancing the consumption of CH4 and N2O. The metagenomic data showed that the intervention of larvae reduced the ratio of (nirK + nirS + nor)/nosZ in the residues, thereby reducing the emission of N2O. Larvae also increased the functional gene abundance of nirA, nirB, nirD, and nrfA in the residues, making nitrite more inclined to be reduced to ammonia instead of N2O. The larvae bioreactor mitigated greenhouse gas emissions by redistributing carbon and nitrogen and remodeling microbiomes during waste bioconversion, giving related enterprises a relative advantage in carbon trading.


Assuntos
Carbono , Gases de Efeito Estufa , Larva , Microbiota , Nitrogênio , Animais , Carbono/metabolismo , Dípteros , Reatores Biológicos , RNA Ribossômico 16S , Metano/metabolismo
7.
J Org Chem ; 89(5): 2885-2894, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38355424

RESUMO

Because of their various reactivities, propargyl acetates are refined chemical intermediates that are extensively applied in pharmaceutical synthesis. Currently, reactions between propargyl acetates and chlorosilanes may be the most effective method for synthesizing silylallenes. Nevertheless, owing to the adaptability and selectivity of substrates, transition metal catalysis is difficult to achieve. Herein, nickel-catalyzed reductive cross-coupling reactions between propargyl acetates and substituted vinyl chlorosilanes for the synthesis of tetrasubstituted silylallenes are described. Therein, metallic zinc is a crucial reductant that effectively enables two electrophilic reagents to selectively construct C(sp2)-Si bonds. Additionally, a Ni-catalyzed reductive mechanism involving a radical process is proposed on the basis of deuteration-labeled experiments.

8.
Medicine (Baltimore) ; 103(1): e36839, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181235

RESUMO

BACKGROUND: Many clinical trials have shown that postoperative adjuvant chemotherapy can provide a survival benefit for patients with stage IB non-small cell lung cancer. However, whether adjuvant chemotherapy should be routinely given after surgery remains controversial. Therefore, we performed a meta-analysis to investigate the efficacy of adjuvant chemotherapy versus surgery alone for stage IB non-small cell lung cancer (NSCLC). METHODS: Relevant retrospective studies or randomized controlled trial comparing the efficacy of postoperative adjuvant chemotherapy versus observation on the survival outcomes of NSCLC patients up to October 30, 2023 were searched in PubMed, Web of Science, EMBASE, Cochrane Library, VIP database, Wanfang database, and China National Knowledge Internet database. Patient survival data, population characteristics, and other relevant information were extracted, and data were analyzed using Review Manager 5.4. The primary endpoints included overall survival, disease-free survival, and recurrence-free survival. RESULTS: A total of 13 randomized controlled trials or cohort studies including 19,442 patients were included. The results of the meta-analysis showed that postoperative adjuvant chemotherapy in patients with stage IB NSCLC had better overall survival (odds ratio [OR] = 1.25, 95% confidence interval [CI] 1.19-1.31, P < .00001) and disease-free survival or recurrence-free survival (OR = 1.57, 95% CI 1.3-1.9, P < .00001) compared with observation; and the 4-year survival rate of patients who received postoperative adjuvant chemotherapy was better than the observation group (OR = 1.52, 95% CI 1.05-2.18, P = .03); and the 8-year survival rate of patients receiving postoperative adjuvant chemotherapy (OR = 1.5, 95% CI 0.94-2.4, P = .09) was comparable to the observation group. CONCLUSION: Receiving postoperative adjuvant chemotherapy improved people's survival and prolonged disease-free survival and recurrence-free survival in patients with stage IB non-small cell lung cancer compared with surgery alone.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Estudos Retrospectivos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/cirurgia , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Quimioterapia Adjuvante , Ensaios Clínicos Controlados Aleatórios como Assunto
9.
Proc Natl Acad Sci U S A ; 121(4): e2309102121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38232287

RESUMO

Nonradicals are effective in selectively degrading electron-rich organic contaminants, which unfortunately suffer from unsatisfactory yield and uncontrollable composition due to the competitive generation of radicals. Herein, we precisely construct a local microenvironment of the carbon nitride-supported high-loading (~9 wt.%) Fe single-atom catalyst (Fe SAC) with sulfur via a facile supermolecular self-assembly strategy. Short-distance S coordination boosts the peroxymonosulfate (PMS) activation and selectively generates high-valent iron-oxo species (FeIV=O) along with singlet oxygen (1O2), significantly increasing the 1O2 yield, PMS utilization, and p-chlorophenol reactivity by 6.0, 3.0, and 8.4 times, respectively. The composition of nonradicals is controllable by simply changing the S content. In contrast, long-distance S coordination generates both radicals and nonradicals, and could not promote reactivity. Experimental and theoretical analyses suggest that the short-distance S upshifts the d-band center of the Fe atom, i.e., being close to the Fermi level, which changes the binding mode between the Fe atom and O site of PMS to selectively generate 1O2 and FeIV=O with a high yield. The short-distance S-coordinated Fe SAC exhibits excellent application potential in various water matrices. These findings can guide the rational design of robust SACs toward a selective and controllable generation of nonradicals with high yield and PMS utilization.

10.
IEEE Trans Image Process ; 33: 525-540, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38150346

RESUMO

This paper focuses on the facial micro-expression (FME) generation task, which has potential application in enlarging digital FME datasets, thereby alleviating the lack of training data with labels in existing micro-expression datasets. Despite obvious progress in the image animation task, FME generation remains challenging because existing image animation methods can hardly encode subtle and short-term facial motion information. To this end, we present a facial-prior-guided FME generation framework that takes advantage of facial priors for facial motion generation. Specifically, we first estimate the geometric locations of action units (AUs) with detected facial landmarks. We further calculate an adaptive weighted prior (AWP) map, which alleviates the estimation error of AUs while efficiently capturing subtle facial motion patterns. To achieve smooth and realistic synthesis results, we use our proposed facial prior module to guide motion representation and generation modules in mainstream image animation frameworks. Extensive experiments on three benchmark datasets consistently show that our proposed facial prior module can be adopted in image animation frameworks and significantly improve their performance on micro-expression generation. Moreover, we use the generation technique to enlarge existing datasets, thereby improving the performance of general action recognition backbones on the FME recognition task. Our code is available at https://github.com/sysu19351158/FPB-FOMM.


Assuntos
Face , Expressão Facial , Face/diagnóstico por imagem
11.
J Org Chem ; 89(1): 281-290, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38109762

RESUMO

A visible-light-driven photoredox dialkylation of styrenes with α-carbonyl alkyl bromides and pyridin-1-ium salts for the synthesis of polysubstituted 1,4-dihydropyridines is reported. This reaction enables the formation of two new C(sp3)-C(sp3) bonds in a single reaction step and provides a strategy that employs pyridin-1-ium salts as the functionalized alkylating reagents via dearomatization to directly trap the resulting alkyl radicals from radical addition of alkenes and then terminate the alkene dialkylation.

12.
Org Lett ; 26(1): 127-131, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38127069

RESUMO

A highly selective hydrogenation of 3-keto in steroids to 3-hydroxyl steroids catalyzed by hydroxysteroid dehydrogenases (HSDHs) was demonstrated. The Ct3α-HSDH-catalyzed hydrogenation generated 3α-hydroxyl steroids as the main enantiopure isomers in high yields, while the Ss3ß-HSDH catalytic system afforded 3ß-hydroxyl steroids in excellent yields. In both catalytic systems, the hydrogenation proceeded regioselectively at 3-keto with 7-, 11-, 17-, and 20-keto almost unreacted, and chemoselectively with the C═C bond and ester group unattacked. Our HSDH-promoted hydrogenation showed advantages like high regio-, chemo-, and enantioselectivity, good yields, mild conditions, a wide substrate scope, and being suitable for gram-scale synthesis. Notably, bioactive molecules like dehydroepiandrosterone, brienolone, and alfaxalone were obtained facilely in high yields via our hydrogenation approach.


Assuntos
Hidroxiesteroide Desidrogenases , Esteroides , Hidroxiesteroide Desidrogenases/metabolismo , Hidrogenação , Estereoisomerismo , Catálise
13.
Environ Sci Pollut Res Int ; 30(57): 120030-120043, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37934409

RESUMO

Elevated Sb(V) concentration in textile wastewater is a growing environmental concern worldwide and has received wider attention in recent years. Iron oxides possess appealing characteristics as efficient and cost-effective adsorbents in large-scale applications. In the present study, Sb(V) adsorption capacity of α-Fe2O3, γ-Fe2O3, and Fe3O4 was compared under experimental conditions close to the practical textile wastewater treatment. Results demonstrated that α-Fe2O3 performed better under different pH values, reaction times, dye compounds, and co-existing ions as compared to γ-Fe2O3 and Fe3O4, and the adsorption equilibrium was achieved within 8 h. Sb(V) adsorption is found to be highly pH dependent, and higher removal was achieved in lower pH, indicating the involvement of electrostatic interactions. The pHpzc value of α-Fe2O3 was 7.15, which favored Sb(V) adsorption in practical wastewater having neutral pH value (pH ~ 7). Pseudo-first- and pseudo-second-order described the data and the simulated values of qe fitted well with the experimental values, indicating that pseudo-second-order model described the adsorption kinetics better with R2 (> 0.95) higher than of pseudo-first-order plots. The Langmuir and Freundlich models both described well the sorption data of all the adsorbents, where the R2 values were > 0.90 with a better fit in the Freundlich model for α-Fe2O3, suggesting that the adsorbent has heterogeneous surface characteristics. Similarly, characterizations revealed that the specific surface area, pore volume, and hydroxyl group content in α-Fe2O3 were higher than others, making it easier for contaminants to bind on to the active sites. Furthermore, the effect of dyes and co-existing anions on Sb(V) adsorption was negligible, except for SO42-, CO32-, and PO43- by the formation of inner-sphere complexes with iron oxides through competitive adsorption with [Sb(OH)6]-. Findings from the present study suggested that α-Fe2O3 effectively reduced Sb(V) in textile wastewater and could be a promising alternative for practical textile wastewater treatment.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Corantes , Ânions , Adsorção , Têxteis , Concentração de Íons de Hidrogênio , Óxidos , Ferro , Cinética , Poluentes Químicos da Água/análise
14.
ACS Appl Mater Interfaces ; 15(42): 49689-49700, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37823839

RESUMO

In nature, living organisms, such as octopuses, cabrito, and frogs, have already evolved admirable adhesive abilities for better movement and predation in response to the surroundings. Inspired by biological structures, researchers have made enormous efforts in developing actuators that can respond to external stimuli, while such adhesive property is very desired, yet there is still limited research in responsive hydrogel actuators. Here, a bilayer actuator with high stretchability and robust interface bonding is presented, which has a smart adhesion and thermoreception function. The system consists of an adhesive passive layer copolymerized of amphoteric ([2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl), SBMA) and acrylic acid (AA), and an active layer hydrogel composed of poly(N-isopropylacrylamide) (PNIPAm) containing polydopamine-modified MXene (P-MXene) and calcium chloride (CaCl2). The coordination of carboxylate and Ca2+ at the interface of the two layers enhances the interfacial bonding from 14 to 30 N m-1, which facilitates withstanding large strain and preventing stratification. The resulting hydrogel actuator can bend approximately 360° in a mere 10 s, exhibiting excellent photothermal effect, a large angle bending deformation, and ultrafast photoresponsive ability. As a proof of concept, the photothermal actuators are programmed to present various shapes and grab objects. Importantly, the hydrogel actuator exhibits remarkable adhesion capabilities toward diverse substrates, with a maximum peel force of up to 280 N m-1. Relying on their own adhesion and the photoresponse properties, these flexible adhesion actuators show outstanding gripping capability, enabling them to grip and release objects of different shapes and weights. More interestingly, the hydrogel exhibits a smart adjustable adhesion capability at different temperatures, which enables it as a gripper to recognize temperature signals through real-time different feedback actions based on its own adhesion. This study presents innovative insights into biomimetic hydrogel actuators, providing new opportunities for developing intelligent soft robots with multiple functions.

15.
Org Lett ; 25(42): 7645-7649, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37843412

RESUMO

A palladium(0)-catalyzed ß-C(sp3)-H arylation of silyl prop-1-en-1-ol ethers with aryl halides for the synthesis of α,ß-unsaturated ketones is presented. In contrast to the reported ß-C(sp3)-H arylation of ketones, the chemoselectivity of this current method relies on the Pd(0) catalytic systems and reaction temperatures: While using the Pd(dba)2/DavePhos/KF system at 80 °C resulted in ß-C(sp3)-H monoarylation to produce ß-monoarylated α,ß-unsaturated ketones, harnessing the Pd(OAc)2/t-Bu XPhos/K2HPO4 system at 110 °C induced ß-C(sp3)-H diarylation to afford ß,ß-diarylated α,ß-unsaturated ketones. The method provides a versatile route that uses readily available ketone-derivatized α-nonsubstituted silyl prop-1-en-1-ol ethers as the alkene sources and is characterized by a good functional group compatibility, a broad substrate scope, and an excellent selectivity.

16.
Org Lett ; 25(39): 7263-7267, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37756013

RESUMO

An electroreductive cross-coupling of prop-2-yn-1-yl acetates with chloro(vinyl)silanes for producing tetrasubstituted silylallenes is developed. The method enables the formation of a new C─Si bond through the cathodic reduction formation of the silyl radical, radical addition across the C≡C bond, the alkenyl anion intermediate formation, and deacetoxylation and represents a mild, practical route to the synthesis of silylallenes. Mechanistic studies reveal that CoCl2 acts as the mediator to promote the formation of the alkenyl anion intermediate via electron transfer.

17.
Chem Rec ; 23(12): e202300242, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37590437

RESUMO

Organic cycles play an important role in chemistry, pharmacology and material science for their unique properties. Construction of organic cycles from thioalkynes attracted increasing attention due to the facile access of thioalkynes. 2H-Azirines were synthesized successfully from thioalkynyl oxime ethers. Cyclobutanes were formed through chiral titanium catalyzed cycloaddition of thioalkynes. Cyclopentenes were afforded by annulation of thioalkynes. Thioalkynes could be also applied to synthesize thiophenes, oxazoles, benzo[b]thiophenes, 2H-chromenes, 2-phenylbenzothiazoles, diazacyclobutene, etc. In this review, construction of organic cycles from thioalkynes were highlighted. Firstly, the property and application of organic cyclic compounds were simply introduced. After presenting the general methods to access organic cycles, applications of thioalkynes as synthons to prepare organic cycles were classified and presented in detail. Based on different kinds of organic cycles obtained from thioalkynes, organic reactions for synthesis of three-, four-, five-, six-membered as well as fused cycles would be summarized and the plausible reaction mechanisms could be presented if available.

18.
J Colloid Interface Sci ; 652(Pt A): 350-361, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37598435

RESUMO

A green, low-cost, high-performance Fe/N co-doped biochar material (Fe-N@C) was synthesized using salvaged cyanobacteria without other extra precursors for peroxymonosulfate (PMS) activation and ofloxacin (OFX) degradation. With the increased pyrolysis temperature, the graphitization degree, the specific surface area and the corresponding groups like OH, COO etc. for Fe-N@C tended to increase, resulting in a greater OFX adsorption. However, the total amount of Fe-NX and graphitic nitrogen groups in the Fe-N@C composites was firstly increased and then decreased, which reached the highest at 800 °C (Fe-N@C-800). All these changes of functional species ascribed to the strong interaction between Fe, N and C led to the highest defect degree of Fe-N@C-800, resulting the highest OFX removal efficiency of 95.0 %. OFX removal experiments indicated the adsorption process promoted the total OFX degradation for different functional groups on Fe-N@C composites separately dominated the process of OFX adsorption and PMS catalysis. Radical quenching and electron paramagnetic resonance (EPR) measurements proved free radical and non-free radical pathways participated in Fe-N@C/PMS system. The non-free radicals based on 1O2 and high-valent iron-oxo species played a more important role in OFX degradation, leading to the minimal effect of co-existing anions and the high universality for other antibiotic pollutants. Fe-NX was utilized as the main catalytic sites and graphitic nitrogen contributed more to the electron transfer for PMS activation, whose synergistic effect efficiently facilitated OFX degradation. Finally, the possible degradation route of OFX in the Fe-N@C-800/PMS system was proposed. All these results will provide the new insights into the intrinsic mechanism of Fe/N species in carbon-based materials for PMS activation.


Assuntos
Cianobactérias , Ferro , Ofloxacino , Nitrogênio , Peróxidos
19.
ACS Omega ; 8(25): 23130-23141, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37396276

RESUMO

In this study, lithocholic acid (LCA) was prepared using commercially available plant-sourced bisnoralcohol (BA), and the overall yield of the product was 70.6% for five steps. To prevent process-related impurities, the isomerizations of catalytic hydrogenation in the C4-C5 double bond and reduction of the 3-keto group were optimized. The double bond reduction isomerization was improved (5ß-H:5α-H = 97:3) using palladium-copper nanowires (Pd-Cu NWs) instead of Pd/C. The reduction of the 3-keto group was 100% converted to a 3α-OH product by 3α-hydroxysteroid dehydrogenase/carbonyl reductase catalysis. Moreover, the impurities during the optimization process were comprehensively studied. Compared with the reported synthesis methods, our developed method significantly improved the isomer ratio and overall yield, affording ICH-grade quality of LCA, and it is more cost-effective and suitable for large-scale production of LCA.

20.
Chemosphere ; 338: 139612, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37482312

RESUMO

The ubiquitous heavy metal(loid)s (HMs) contamination has triggered great concern about food safety, while sequestration and separation of trace HMs from herbal extracts still calls for appropriate sorbent materials. In this work, gum acacia was modified by cysteine to form a cysteine-acacia intermolecular complex (Cys-GA complex) via facile mechanochemical synthesis, aiming at capturing multiple HMs simultaneously. Preliminary screening confirms the superiority of Cys-CA complex for both cationic and anionic HMs, and determines an optimum Cys/GA mass ratio of 9:1 to achieve high removal capacities for Pb(II) (938 mg g-1), Cd(II) (834 mg g-1), As(V) (496 mg g-1), and Cr(VI) (647 mg g-1) in simulated aqueous solution. The analysis on HMs-exhausted Cys-GA complex indicates that Pb(II), As(V), and Cr(VI) tend to be removed through chelation, electrostatic attraction, and reduction, while Cd(II) can only be chelated or adsorbed by electrostatic interaction. The batch experiments on commercial herbal (e.g. Panax ginseng, Glycine max, Sophora flavescens, Gardenia jasminoides, Cyclocarya paliurus, and Bamboo leaf) extracts indicate that Cys-GA complex can reduce HMs concentration to attain acceptable level that comply with International Organization for Standardization, with negligible negative effect on its active ingredients. This work provides a practical and convenient strategy to purify HMs-contaminated foods without introducing secondary pollution.


Assuntos
Cisteína , Metais Pesados , Goma Arábica , Cádmio , Chumbo , Metais Pesados/análise , Extratos Vegetais , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...