Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 168873, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38016558

RESUMO

Potentially toxic metal-polluted water resources are a heavily discussed topic the pollution by potentially toxic metals can cause significant health risks. Nanomaterials are actively developed towards providing high specific surface area and creating active adsorption sites for the treatment and remediation of these polluted waters. In an effort to tackle the limitations of conventional type adsorbents, nano-hydroxyapatite (HAp) was developed in this study by in situ generation onto wood powder, resulting in the formation of uniform hybrid powder (HAp@wood composite) structure consisting of HAp nanoparticles that showed the removal efficiency up to 80 % after 10 min; the maximum adsorption capacity for Cu(II) ions (98.95 mg/g-HAp) was higher compared to agglomerated nano-HAp (72.85 mg/g-HAp). The adsorption capacity of Cu(II) remained stable (89.85-107.66 mg/g-HAp) during the four adsorption-desorption cycles in multi-component system, thereby demonstrating high selectivity for Cu(II). This approach of using nanoparticle is relatively simple yet effective in improving the adsorption of potentially toxic metals and the developed approach can be used to develop advanced nanocomposites in commercial wastewater treatment.

2.
Polymers (Basel) ; 14(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35215743

RESUMO

There is an increasing emphasis on the transformation of lignocellulosic biomass into versatile products. The feasibility of preparing xylooligosaccharides (XOS) by hydrolysis of sorghum stalk (SS) using organic and inorganic acids was studied. The influences of different acids (gluconic acid, acetic acid, sulfuric acid, and oxalic acid), process time and temperature on the hydrolysis of SS were explored. The findings indicated XOS yield can be maintained at a high level under different conditions with organic acid pretreatments. Optimum yield of XOS (39.4%) was obtained using sulfuric acid (pH 2.2) at 170 °C and 75 min of process time. It is suggested when reaction temperature and time were increased, both X5 and X6 are cracked into XOS with lower molecular mass such as X2, X3, and X4. Moreover, the results based on mass balance showed that up to 110 g (XOS) plus 117 g (glucose) can be recovered from 1000 g of SS. Results will give insights into establishing an efficient acid pretreatment of sorghum stalk to coproduction of XOS and glucose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...