Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2965-2972, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39041156

RESUMO

This study developed a UPLC-PDA wavelength switching method to simultaneously determine the content of maltol and seventeen saponins in red and black ginseng and compared the quality differences of two different processed products of red and black ginseng. A Waters HSS T3 column(2. 1 mm×100 mm, 1. 8 µm) at 30 ℃ was adopted, with the mobile phase of acetonitrile(A) and water containing 0. 1% phosphoric acid(B) under gradient elution, the flow rate of 0. 3 m L·min~(-1), and the injection volume of 2 µL.The wavelength switching was set at 273 nm within 0-11 min and 203 nm within 11-60 min. The content results of multiple batches of red and black ginseng samples were analyzed by the hierarchical cluster analysis(HCA) and principal component analysis(PCA) to evaluate the quality difference. The results showed that the 18 constituents exhibited good linear relationships within certain concentration ranges, with the correlation coefficients(r) greater than 0. 999 1. The relative standard deviations(RSDs) of precision,repeatability, and stability were all less than 5. 0%. The average recoveries ranged from 95. 93% to 104. 2%, with an RSD of 1. 8%-4. 2%. The content determination results showed that the quality of red and black ginseng samples was different, and the two types of processed products were intuitively distinguished by HCA and PCA. The method is accurate, reliable, and reproducible. It can be used to determine the content of maltol and seventeen saponins in red and black ginseng and provide basic information for the quality evaluation and comprehensive utilization of red and black ginseng.


Assuntos
Panax , Pironas , Saponinas , Panax/química , Saponinas/análise , Saponinas/química , Cromatografia Líquida de Alta Pressão/métodos , Pironas/análise , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise
2.
Pestic Biochem Physiol ; 134: 63-72, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27914541

RESUMO

Panax ginseng C.A. Meyer is a valuable herb in China that has also gained popularity in the West because of its pharmacological properties. The constituents isolated and characterized in ginseng stems include ginsenosides, fatty acids, amino acids, volatile oils, and polysaccharides. In this study, the effects of fungicide azoxystrobin applied on antioxidant enzyme activity and ginsenosides content in ginseng stems was studied by using Panax ginseng C. A. Mey. cv. (the cultivar of Ermaya) under natural environmental conditions. The azoxystrobin formulation (25% SC) was sprayed three times on ginseng plants at different doses (150ga.i./ha and 225ga.i./ha), respectively. Two new fatty acids esters (ethyl linoleate and methyl linolenate) were firstly detected in ginseng stems by the application of azoxystrobin as foliar spray. The results indicated that activities of enzymatic antioxidants, the content of ginsenosides and two new fatty acids esters in ginseng stems in azoxystrobin-treated plants were increased. Azoxystrobin treatments to ginseng plants at all growth stages suggest that the azoxystrobin-induced delay of senescence is due to an enhanced antioxidant enzyme activity protecting the plants from harmful active oxygen species (AOS). The activity of superoxide dismutase (SOD) in azoxystrobin-treated plants was about 1-3 times higher than that in untreated plants. And the effects was more significant (P=0.05) when azoxystrobin was applied at dose of 225ga.i./ha. This work suggests that azoxystrobin plays an important role in delaying of senescence by changing physiological and biochemical indicators and increasing ginsenosides content in ginseng stems.


Assuntos
Fungicidas Industriais/farmacologia , Ácidos Linoleicos/metabolismo , Ácidos Linolênicos/metabolismo , Metacrilatos/farmacologia , Panax/efeitos dos fármacos , Caules de Planta/efeitos dos fármacos , Pirimidinas/farmacologia , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Clorofila/metabolismo , Ésteres , Ginsenosídeos/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Panax/química , Panax/metabolismo , Peroxidase/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/química , Caules de Planta/metabolismo , Estrobilurinas , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...