Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Lett ; 46(4): 691-698, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38705963

RESUMO

Protein FadR is known as a fatty acid metabolism global regulator that sustains cell envelope integrity by changing the profile of fatty acid. Here, we present its unique participation in the defense against reactive oxygen species (ROS) in the bacterium. FadR contributes to defending extracellular ROS by maintaining the permeability of the cell membrane. It also facilitates the ROS detoxification process by increasing the expression of ROS neutralizers (KatB, KatG, and AhpCF). FadR also represses the leakage of ROS by alleviating the respiratory action conducted by terminal cytochrome cbb3-type heme-copper oxidases (ccoNOQP). These findings suggest that FadR plays a comprehensive role in modulating the bacterial oxidative stress response, instead of merely strengthening the cellular barrier against the environment. This study sheds light on the complex mechanisms of bacterial ROS defense and offers FadR as a novel target for ROS control research.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Estresse Oxidativo , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Membrana Celular/metabolismo
2.
Appl Environ Microbiol ; 89(5): e0043323, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37098893

RESUMO

Bacteria employ multiple transcriptional regulators to orchestrate cellular responses to adapt to constantly varying environments. The bacterial biodegradation of polycyclic aromatic hydrocarbons (PAHs) has been extensively described, and yet, the PAH-related transcriptional regulators remain elusive. In this report, we identified an FadR-type transcriptional regulator that controls phenanthrene biodegradation in Croceicoccus naphthovorans strain PQ-2. The expression of fadR in C. naphthovorans PQ-2 was induced by phenanthrene, and its deletion significantly impaired both the biodegradation of phenanthrene and the synthesis of acyl-homoserine lactones (AHLs). In the fadR deletion strain, the biodegradation of phenanthrene could be recovered by supplying either AHLs or fatty acids. Notably, FadR simultaneously activated the fatty acid biosynthesis pathway and repressed the fatty acid degradation pathway. As intracellular AHLs are synthesized with fatty acids as substrates, boosting the fatty acid supply could enhance AHL synthesis. Collectively, these findings demonstrate that FadR in C. naphthovorans PQ-2 positively regulates PAH biodegradation by controlling the formation of AHLs, which is mediated by the metabolism of fatty acids. IMPORTANCE Master transcriptional regulation of carbon catabolites is extremely important for the survival of bacteria that face changes in carbon sources. Polycyclic aromatic hydrocarbons (PAHs) can be utilized as carbon sources by some bacteria. FadR is a well-known transcriptional regulator involved in fatty acid metabolism; however, the connection between FadR regulation and PAH utilization in bacteria remains unknown. This study revealed that a FadR-type regulator in Croceicoccus naphthovorans PQ-2 stimulated PAH biodegradation by controlling the biosynthesis of the acyl-homoserine lactone quorum-sensing signals that belong to fatty acid-derived compounds. These results provide a unique perspective for understanding bacterial adaptation to PAH-containing environments.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Percepção de Quorum , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo , Ácidos Graxos
3.
Sheng Wu Gong Cheng Xue Bao ; 39(3): 961-977, 2023 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-36994565

RESUMO

Aromatic compounds are a class of organic compounds with benzene ring(s). Aromatic compounds are hardly decomposed due to its stable structure and can be accumulated in the food cycle, posing a great threat to the ecological environment and human health. Bacteria have a strong catabolic ability to degrade various refractory organic contaminants (e.g., polycyclic aromatic hydrocarbons, PAHs). The adsorption and transportation are prerequisites for the catabolism of aromatic compounds by bacteria. While remarkable progress has been made in understanding the metabolism of aromatic compounds in bacterial degraders, the systems responsible for the uptake and transport of aromatic compounds are poorly understood. Here we summarize the effect of cell-surface hydrophobicity, biofilm formation, and bacterial chemotaxis on the bacterial adsorption of aromatic compounds. Besides, the effects of outer membrane transport systems (such as FadL family, TonB-dependent receptors, and OmpW family), and inner membrane transport systems (such as major facilitator superfamily (MFS) transporter and ATP-binding cassette (ABC) transporter) involved in the membrane transport of these compounds are summarized. Moreover, the mechanism of transmembrane transport is also discussed. This review may serve as a reference for the prevention and remediation of aromatic pollutants.


Assuntos
Bactérias , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Adsorção , Bactérias/metabolismo , Compostos Orgânicos , Transporte Biológico , Transportadores de Cassetes de Ligação de ATP , Hidrocarbonetos Policíclicos Aromáticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...