Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2307804, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837887

RESUMO

RNA splicing is crucial in the multilayer regulatory networks for gene expression, making functional interactions with DNA- and other RNA-processing machineries in the nucleus. However, these established couplings are all major spliceosome-related; whether the minor spliceosome is involved remains unclear. Here, through affinity purification using Drosophila lysates, an interaction is identified between the minor spliceosomal 65K/RNPC3 and ANKRD11, a cofactor of histone deacetylase 3 (HDAC3). Using a CRISPR/Cas9 system, Deletion strains are constructed and found that both Dm65KΔ/Δ and Dmankrd11Δ/Δ mutants have reduced histone deacetylation at Lys9 of histone H3 (H3K9) and Lys5 of histone H4 (H4K5) in their heads, exhibiting various neural-related defects. The 65K-ANKRD11 interaction is also conserved in human cells, and the HsANKRD11 middle-uncharacterized domain mediates Hs65K association with HDAC3. Cleavage under targets and tagmentation (CUT&Tag) assays revealed that HsANKRD11 is a bridging factor, which facilitates the synergistic common chromatin-binding of HDAC3 and Hs65K. Knockdown (KD) of HsANKRD11 simultaneously decreased their common binding, resulting in reduced deacetylation of nearby H3K9. Ultimately, this study demonstrates that expression changes of many genes caused by HsANKRD11-KD are due to the decreased common chromatin-binding of HDAC3 and Hs65K and subsequently reduced deacetylation of H3K9, illustrating a novel and conserved coupling mechanism that links the histone deacetylation with minor spliceosome for the regulation of gene expression.

2.
Nucleic Acids Res ; 52(10): 6002-6016, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38499485

RESUMO

Alternative splicing (AS) generates multiple RNA isoforms and increases the complexities of transcriptomes and proteomes. However, it remains unclear how RNA structures contribute to AS regulation. Here, we systematically search transcriptomes for secondary structures with concealed branch sites (BSs) in the alternatively spliced introns and predict thousands of them from six organisms, of which many are evolutionarily conserved. Intriguingly, a highly conserved stem-loop structure with concealed BSs is found in animal SF3B3 genes and colocalizes with a downstream poison exon (PE). Destabilization of this structure allows increased usage of the BSs and results in enhanced PE inclusion in human and Drosophila cells, leading to decreased expression of SF3B3. This structure is experimentally validated using an in-cell SHAPE-MaP assay. Through RNA interference screens of 28 RNA-binding proteins, we find that this stem-loop structure is sensitive to U2 factors. Furthermore, we find that SF3B3 also facilitates DNA repair and protects genome stability by enhancing interaction between ERCC6/CSB and arrested RNA polymerase II. Importantly, both Drosophila and human cells with the secondary structure mutated by genome editing exhibit altered DNA repair in vivo. This study provides a novel and common mechanism for AS regulation of PEs and reveals a physiological function of SF3B3 in DNA repair.


Assuntos
Processamento Alternativo , Éxons , Íntrons , Animais , Humanos , Sequência Conservada , Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Éxons/genética , Íntrons/genética , Conformação de Ácido Nucleico , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Códon sem Sentido
3.
PLoS Genet ; 19(11): e1011021, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37917726

RESUMO

Small nuclear RNAs (snRNAs) are structural and functional cores of the spliceosome. In metazoan genomes, each snRNA has multiple copies/variants, up to hundreds in mammals. However, the expressions and functions of each copy/variant in one organism have not been systematically studied. Focus on U1 snRNA genes, we investigated all five copies in Drosophila melanogaster using two series of constructed strains. Analyses of transgenic flies that each have a U1 promoter-driven gfp revealed that U1:21D is the major and ubiquitously expressed copy, and the other four copies have specificities in developmental stages and tissues. Mutant strains that each have a precisely deleted copy of U1-gene exhibited various extents of defects in fly morphology or mobility, especially deletion of U1:82Eb. Interestingly, splicing was changed at limited levels in the deletion strains, while large amounts of differentially-expressed genes and alternative polyadenylation events were identified, showing preferences in the down-regulation of genes with 1-2 introns and selection of proximal sites for 3'-end polyadenylation. In vitro assays suggested that Drosophila U1 variants pulled down fewer SmD2 proteins compared to the canonical U1. This study demonstrates that all five U1-genes in Drosophila have physiological functions in development and play regulatory roles in transcription and 3'-end formation.


Assuntos
Drosophila melanogaster , RNA Nuclear Pequeno , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Splicing de RNA/genética , Drosophila/genética , Drosophila/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mamíferos/genética
4.
EMBO Rep ; 24(10): e57128, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37661812

RESUMO

The polyA tail of mRNAs is important for many aspects of RNA metabolism. However, whether and how it regulates pre-mRNA splicing is still unknown. Here, we report that the polyA tail acts as a splicing enhancer for the last intron via the nuclear polyA binding protein PABPN1 in HeLa cells. PABPN1-depletion induces the retention of a group of introns with a weaker 3' splice site, and they show a strong 3'-end bias and mainly locate in nuclear speckles. The polyA tail is essential for PABPN1-enhanced last intron splicing and functions in a length-dependent manner. Tethering PABPN1 to nonpolyadenylated transcripts also promotes splicing, suggesting a direct role for PABPN1 in splicing regulation. Using TurboID-MS, we construct the PABPN1 interactome, including many spliceosomal and RNA-binding proteins. Specifically, PABPN1 can recruit RBM26&27 to promote splicing by interacting with the coiled-coil and RRM domain of RBM27. PABPN1-regulated terminal intron splicing is conserved in mice. Together, our study establishes a novel mode of post-transcriptional splicing regulation via the polyA tail and PABPN1.

5.
Nucleic Acids Res ; 51(10): 5228-5241, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37070178

RESUMO

Conversely to canonical splicing, back-splicing connects the upstream 3' splice site (SS) with a downstream 5'SS and generates exonic circular RNAs (circRNAs) that are widely identified and have regulatory functions in eukaryotic gene expression. However, sex-specific back-splicing in Drosophila has not been investigated and its regulation remains unclear. Here, we performed multiple RNA analyses of a variety sex-specific Drosophila samples and identified over ten thousand circular RNAs, in which hundreds are sex-differentially and -specifically back-spliced. Intriguingly, we found that expression of SXL, an RNA-binding protein encoded by Sex-lethal (Sxl), the master Drosophila sex-determination gene that is only spliced into functional proteins in females, promoted back-splicing of many female-differential circRNAs in the male S2 cells, whereas expression of a SXL mutant (SXLRRM) did not promote those events. Using a monoclonal antibody, we further obtained the transcriptome-wide RNA-binding sites of SXL through PAR-CLIP. After splicing assay of mini-genes with mutations in the SXL-binding sites, we revealed that SXL-binding on flanking exons and introns of pre-mRNAs facilitates back-splicing, whereas SXL-binding on the circRNA exons inhibits back-splicing. This study provides strong evidence that SXL has a regulatory role in back-splicing to generate sex-specific and -differential circRNAs, as well as in the initiation of sex-determination cascade through canonical forward-splicing.


Assuntos
Proteínas de Drosophila , RNA Circular , Proteínas de Ligação a RNA , Animais , Feminino , Masculino , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , RNA/genética , RNA/metabolismo , Splicing de RNA/genética , RNA Circular/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
6.
Wiley Interdiscip Rev RNA ; 14(1): e1761, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36056453

RESUMO

Catalyzed by spliceosomes in the nucleus, RNA splicing removes intronic sequences from precursor RNAs in eukaryotes to generate mature RNA, which also significantly increases proteome complexity and fine-tunes gene expression. Most metazoans have two coexisting spliceosomes; the major spliceosome, which removes >99.5% of introns, and the minor spliceosome, which removes far fewer introns (only 770 at present have been predicted in the human genome). Both spliceosomes are large and dynamic machineries, each consisting of five small nuclear RNAs (snRNAs) and more than 100 proteins. However, the dynamic assembly, catalysis, and protein composition of the minor spliceosome are still poorly understood. With different splicing signals, minor introns are rare and usually distributed alone and flanked by major introns in genes, raising questions of how they are recognized by the minor spliceosome and how their processing deals with the splicing of neighboring major introns. Due to large numbers of introns and close similarities between the two machinery, cooperative, and competitive recognition by the two spliceosomes has been investigated. Functionally, many minor-intron-containing genes are evolutionarily conserved and essential. Mutations in the minor spliceosome exhibit a variety of developmental defects in plants and animals and are linked to numerous human diseases. Here, we review recent progress in the understanding of minor splicing, compare currently known components of the two spliceosomes, survey minor introns in a wide range of organisms, discuss cooperation and competition of the two spliceosomes in splicing of minor-intron-containing genes, and contributions of minor splicing mutations in development and diseases. This article is categorized under: RNA Processing > Processing of Small RNAs RNA Processing > Splicing Mechanisms RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.


Assuntos
Splicing de RNA , Spliceossomos , Animais , Humanos , Spliceossomos/genética , Spliceossomos/metabolismo , Íntrons , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , RNA/metabolismo
7.
Plant Cell ; 34(9): 3443-3459, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35699507

RESUMO

Phytophthora effector PSR1 suppresses small RNA (sRNA)-mediated immunity in plants, but the underlying mechanism remains unknown. Here, we show that Phytophthora suppressor of RNA silencing 1 (PSR1) contributes to the pathogenicity of Phytophthora sojae and specifically binds to three conserved C-terminal domains of the eukaryotic PSR1-Interacting Protein 1 (PINP1). PINP1 encodes PRP16, a core pre-mRNA splicing factor that unwinds RNA duplexes and binds to primary microRNA transcripts and general RNAs. Intriguingly, PSR1 decreased both RNA helicase and RNA-binding activity of PINP1, thereby dampening sRNA biogenesis and RNA metabolism. The PSR1-PINP1 interaction caused global changes in alternative splicing (AS). A total of 5,135 genes simultaneously exhibited mis-splicing in both PSR1-overexpressing and PINP1-silenced plants. AS upregulated many mRNA transcripts that had their introns retained. The high occurrence of intron retention in AS-induced transcripts significantly promoted Phytophthora pathogen infection in Nicotiana benthamiana, and this might be caused by the production of truncated proteins. Taken together, our findings reveal a key role for PINP1 in regulating sRNA biogenesis and plant immunity.


Assuntos
Phytophthora , Pequeno RNA não Traduzido , Doenças das Plantas , Imunidade Vegetal , Plantas , Precursores de RNA , Glycine max
8.
Genes (Basel) ; 13(4)2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35456475

RESUMO

Many post-transcriptional mRNA processing steps play crucial roles in tumorigenesis and the progression of cancers, such as N6-methyladenosine (m6A) modification and alternative splicing. Upregulation of methyltransferase-like 3 (METTL3), the catalytic core of the m6A methyltransferase complex, increases m6A levels and results in significant effects on the progression of hepatocellular carcinoma (HCC). However, alternative splicing of METTL3 has not been fully investigated, and the functions of its splice variants remain unclear. Here, we analyzed both our and online transcriptomic data, obtaining 13 splice variants of METTL3 in addition to canonical full-length METTL3-A in HCC cell lines and tissues. Validated by RT-qPCR and Western blotting, we found that METTL3-D, one of the splice variants expressing a truncated METTL3 protein, exhibits higher levels than METTL3-A in normal human livers but lower levels than METTL3-A in HCC tumor tissues and cell lines. Further functional assays demonstrated that METTL3-D expression decreased cellular m6A modification, inhibited the proliferation, migration, and invasion of HCC cells, and was negatively associated with the malignancy of patient tumors, exhibiting functions opposite to those of full-length METTL3-A. This study demonstrates that the METTL3-D splice variant is a tumor suppressor that could potentially be used as a target for HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Adenosina/genética , Adenosina/metabolismo , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/patologia , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Mensageiro/genética
9.
PLoS Genet ; 17(11): e1009861, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34723968

RESUMO

SF3B1 mutations occur in many cancers, and the highly conserved His662 residue is one of the hotspot mutation sites. To address effects on splicing and development, we constructed strains carrying point mutations at the corresponding residue His698 in Drosophila using the CRISPR-Cas9 technique. Two mutations, H698D and H698R, were selected due to their frequent presence in patients and notable opposite charges. Both the sf3b1-H698D and-H698R mutant flies exhibit developmental defects, including less egg-laying, decreased hatching rates, delayed morphogenesis and shorter lifespans. Interestingly, the H698D mutant has decreased resistance to fungal infection, while the H698R mutant shows impaired climbing ability. Consistent with these phenotypes, further analysis of RNA-seq data finds altered expression of immune response genes and changed alternative splicing of muscle and neural-related genes in the two mutants, respectively. Expression of Mef2-RB, an isoform of Mef2 gene that was downregulated due to splicing changes caused by H698R, partly rescues the climbing defects of the sf3b1-H698R mutant. Lariat sequencing reveals that the two sf3b1-H698 mutations cause aberrant selection of multiple intronic branch sites, with the H698R mutant using far upstream branch sites in the changed alternative splicing events. This study provides in vivo evidence from Drosophila that elucidates how these SF3B1 hotspot mutations alter splicing and their consequences in development and in the immune system.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Íntrons , Mutação , Animais , Sistemas CRISPR-Cas , Drosophila/imunologia
10.
Front Genet ; 12: 642602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859668

RESUMO

Interrupted exons in the pre-mRNA transcripts are ligated together through RNA splicing, which plays a critical role in the regulation of gene expression. Exons with a length ≤ 30 nt are defined as microexons that are unique in identification. However, microexons, especially those shorter than 8 nt, have not been well studied in many organisms due to difficulties in mapping short segments from sequencing reads. Here, we analyzed mRNA-seq data from a variety of Drosophila samples with a newly developed bioinformatic tool, ce-TopHat. In addition to the Flybase annotated, 465 new microexons were identified. Differentially alternatively spliced (AS) microexons were investigated between the Drosophila tissues (head, body, and gonad) and genders. Most of the AS microexons were found in the head and two AS microexons were identified in the sex-determination pathway gene fruitless.

11.
Nat Commun ; 11(1): 5608, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154379

RESUMO

The minor spliceosome is evolutionarily conserved in higher eukaryotes, but its biological significance remains poorly understood. Here, by precise CRISPR/Cas9-mediated disruption of the U12 and U6atac snRNAs, we report that a defective minor spliceosome is responsible for spinal muscular atrophy (SMA) associated phenotypes in Drosophila. Using a newly developed bioinformatic approach, we identified a large set of minor spliceosome-sensitive splicing events and demonstrate that three sensitive intron-containing neural genes, Pcyt2, Zmynd10, and Fas3, directly contribute to disease development as evidenced by the ability of their cDNAs to rescue the SMA-associated phenotypes in muscle development, neuromuscular junctions, and locomotion. Interestingly, many splice sites in sensitive introns are recognizable by both minor and major spliceosomes, suggesting a new mechanism of splicing regulation through competition between minor and major spliceosomes. These findings reveal a vital contribution of the minor spliceosome to SMA and to regulated splicing in animals.


Assuntos
Proteínas de Drosophila/genética , Íntrons , Atrofia Muscular Espinal/genética , Proteínas do Tecido Nervoso/genética , Spliceossomos/patologia , Animais , Modelos Animais de Doenças , Drosophila , Atrofia Muscular Espinal/patologia , Mutação , Fenótipo , Sítios de Splice de RNA , Splicing de RNA/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Spliceossomos/genética
12.
Hortic Res ; 7(1): 160, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33082967

RESUMO

The curd of cauliflower (Brassica oleracea L. var. botrytis) is a modified inflorescence that is consumed as a vegetable. Curd formation is proposed to be due to a mutation in the BobCAULIFLOWER (BobCAL) gene, but the genetic relationship between BobCAL variation and curd morphotypes remains obscure. To address this question, we collected and classified a collection of 78 cauliflower accessions into four subpopulations according to curd surface features: smooth, coarse, granular, and hairy curd morphotypes. Through the cDNA sequencing of BobCAL alleles, we showed that smooth and coarse accessions characterized by inflorescence meristem arrest presented a strong association with the 451T SNP (BobCAL_T), whereas granular and hairy accessions marked with floral organ arrest presented an association with 451G (BobCAL_G). Interestingly, all BobCAL alleles were alternatively spliced, resulting in a total of four alternative splice (AS) variants due to the retention of the fourth and/or seventh introns. Among accessions with BobCAL_G alleles, the total expression of all these AS variants in granular plants was almost equal to that in hairy plants; however, the expression of the individual AS variants encoding intact proteins relative to those encoding truncated proteins differed. Hairy accessions showed relatively high expression of the individual variants encoding intact proteins, whereas granular accessions displayed relatively low expression. In smooth cauliflower, the overexpression of the BobCAL_Ga variant caused an alteration in the curd morphotype from smooth to hairy, concurrent with an increase in the expression levels of downstream floral identity genes. These results reveal that alternative splicing of BobCAL transcripts is involved in the determination of cauliflower curd morphotypes.

13.
PLoS Genet ; 16(10): e1009098, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33085660

RESUMO

The 2,2,7-trimethylguanosine (TMG) cap is one of the first identified modifications on eukaryotic RNAs. TMG, synthesized by the conserved Tgs1 enzyme, is abundantly present on snRNAs essential for pre-mRNA splicing. Results from ex vivo experiments in vertebrate cells suggested that TMG ensures nuclear localization of snRNAs. Functional studies of TMG using tgs1 mutations in unicellular organisms yield results inconsistent with TMG being indispensable for either nuclear import or splicing. Utilizing a hypomorphic tgs1 mutation in Drosophila, we show that TMG reduction impairs germline development by disrupting the processing, particularly of introns with smaller sizes and weaker splice sites. Unexpectedly, loss of TMG does not disrupt snRNAs localization to the nucleus, disputing an essential role of TMG in snRNA transport. Tgs1 loss also leads to defective 3' processing of snRNAs. Remarkably, stronger tgs1 mutations cause lethality without severely disrupting splicing, likely due to the preponderance of TMG-capped snRNPs. Tgs1, a predominantly nucleolar protein in Drosophila, likely carries out splicing-independent functions indispensable for animal development. Taken together, our results suggest that nuclear import is not a conserved function of TMG. As a distinctive structure on RNA, particularly non-coding RNA, we suggest that TMG prevents spurious interactions detrimental to the function of RNAs that it modifies.


Assuntos
Capuzes de RNA/genética , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Nuclear Pequeno/genética , Animais , Drosophila melanogaster/genética , Guanosina/análogos & derivados , Guanosina/genética , Guanosina/metabolismo , Íntrons/genética , Larva/genética , Larva/crescimento & desenvolvimento , Metiltransferases/genética , Saccharomyces cerevisiae/genética , Análise de Sequência de RNA/métodos , Spliceossomos/genética
14.
Plant Physiol ; 184(2): 973-987, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32732348

RESUMO

RNA SPLICING FACTOR1 (SF1) is responsible for recognizing the branch point site (BPS) sequence in introns and is critical for pre-mRNA splicing. In Arabidopsis (Arabidopsis thaliana), splicing factor1 (AtSF1) has been shown to retain the conserved function, but it is unexpected that null atsf1 mutants are viable. Here, we identified an allele of atsf1, named suppressor of thf1-4 (sot4), from suppressor screening for leaf variegation of thylakoid formation1 The sot4 mutant resulting from the G-to-R mutation at the highly conserved 198th amino acid residue within the functionally unknown domain exhibits leaf virescence associated with less accumulation of mature plastid ribosomal RNA, particularly under cold stress. Interestingly, the same point mutation in yeast Saccharomyces cerevisiae MUD synthetic-lethal 5p (SF1/Msl5p) also causes hypersensitivity to coldness and a low splicing activity for the introns with suboptimal BPS sequences. Transcriptomic profiling and reverse-transcription quantitative PCR analyses showed that expression of many genes were up- or downregulated in atsf1 via insufficient intron splicing. Our search for a BPS consensus from the retained introns in atsf1 transcriptomes, combined with RNA electrophoresis mobility shift assays, revealed that AtSF1 directly binds to the BPS consensus containing 5'-CU(U/A)AU-3'. Taken together, our data provide insight into a role for AtSF1 in regulating intron splicing efficiency, which helps plants acclimate to coldness.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Cloroplastos/genética , Cloroplastos/fisiologia , Resposta ao Choque Frio/genética , Resposta ao Choque Frio/fisiologia , Fatores de Processamento de RNA/fisiologia , Splicing de RNA/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas
15.
Nucleic Acids Res ; 48(11): 5799-5813, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32399566

RESUMO

Transcription and pre-mRNA splicing are coupled to promote gene expression and regulation. However, mechanisms by which transcription and splicing influence each other are still under investigation. The ATPase Prp5p is required for pre-spliceosome assembly and splicing proofreading at the branch-point region. From an open UV mutagenesis screen for genetic suppressors of prp5 defects and subsequent targeted testing, we identify components of the TBP-binding module of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex, Spt8p and Spt3p. Spt8Δ and spt3Δ rescue the cold-sensitivity of prp5-GAR allele, and prp5 mutants restore growth of spt8Δ and spt3Δ strains on 6-azauracil. By chromatin immunoprecipitation (ChIP), we find that prp5 alleles decrease recruitment of RNA polymerase II (Pol II) to an intron-containing gene, which is rescued by spt8Δ. Further ChIP-seq reveals that global effects on Pol II-binding are mutually rescued by prp5-GAR and spt8Δ. Inhibited splicing caused by prp5-GAR is also restored by spt8Δ. In vitro assays indicate that Prp5p directly interacts with Spt8p, but not Spt3p. We demonstrate that Prp5p's splicing proofreading is modulated by Spt8p and Spt3p. Therefore, this study reveals that interactions between the TBP-binding module of SAGA and the spliceosomal ATPase Prp5p mediate a balance between transcription initiation/elongation and pre-spliceosome assembly.


Assuntos
RNA Helicases DEAD-box/metabolismo , Splicing de RNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Alelos , Genes Fúngicos/genética , Genoma Fúngico/genética , Mutação , Fenótipo , Ligação Proteica , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
16.
RNA Biol ; 16(6): 809-820, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30836863

RESUMO

Doublesex is highly conserved and sex-specifically spliced in insect sex-determination pathways, and its alternative splicing (AS) is regulated by Transformer, an exonic splicing activator, in the model system of Drosophila melanogaster. However, due to the lack of a transformer gene, AS regulation of doublesex remains unclear in Lepidoptera, which contain the economically important silkworm Bombyx mori and thousands of agricultural pests. Here, we use yeast three-hybrid system to screen for RNA-binding proteins that recognize sex-specific exons 3 and 4 of silkworm doublesex (Bm-dsx); this approach identified BxRBP1/Lark binding to the exon 3, and BxRBP2/TBPH and BxRBP3/Aret binding to the exon 4. Investigation of tissues shows that BxRBP1 and BxRBP2 have no sex specificity, but BxRBP3 has - three of its four isoforms are expressed with a sex-bias. Using novel sex-specific silkworm cell lines, we find that BxRBP1 and BxRBP3 directly interact with each other, and cooperatively function as splicing repressors. Over-expression of BxRBP1 and BxRBP3 isoforms efficiently inhibits splicing of the exons 3 and 4 in the female-specific cells and generates the male-specific isoform of Bm-dsx. We also demonstrate that the sex-determination upstream gene Masc regulates alternatively transcribed BxRBP3 isoforms. Thus, we identify a new regulatory mechanism of doublesex AS in the silkworm, revealing an evolutionary divergence in insect sex-determination.


Assuntos
Processamento Alternativo , Bombyx/genética , Proteínas de Ligação a DNA/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Bombyx/metabolismo , Proteínas de Ligação a DNA/metabolismo , Éxons , Feminino , Genes de Insetos , Proteínas de Insetos/química , Masculino , Sinais de Localização Nuclear , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Caracteres Sexuais , Transcrição Gênica
17.
Nucleic Acids Res ; 47(6): 3142-3157, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30649456

RESUMO

In Drosophila, dosage compensation globally upregulates the expression of genes located on male single X-chromosome. Maleless (MLE) helicase plays an essential role to incorporate the roX lncRNA into the dosage compensation complex (MSL-DCC), and such function is essentially dependent on its dsRNA-binding domains (dsRBDs). Here, we report a 2.90Å crystal structure of tandem dsRBDs of MLE in complex with a 55mer stem-loop of roX2 (R2H1). MLE dsRBDs bind to R2H1 cooperatively and interact with two successive minor grooves and a major groove of R2H1, respectively. The recognition of R2H1 by MLE dsRBDs involves both shape- and sequence-specificity. Moreover, dsRBD2 displays a stronger RNA affinity than dsRBD1, and mutations of key residues in either MLE dsRBD remarkably reduce their affinities for roX2 both in vitro and in vivo. In Drosophila, the structure-based mle mutations generated using the CRISPR/Cas9 system, are partially male-lethal and indicate the inter-regulation among the components of the MSL-DCC at multiple levels. Hence, our research provides structural insights into the interactions between MLE dsRBDs and R2H1 and facilitates a deeper understanding of the mechanism by which MLE tandem dsRBDs play an indispensable role in specific recognition of roX and the assembly of the MSL-DCC in Drosophila dosage compensation.


Assuntos
Proteínas Cromossômicas não Histona/química , DNA Helicases/química , Mecanismo Genético de Compensação de Dose , Proteínas de Drosophila/química , RNA de Cadeia Dupla/genética , Fatores de Transcrição/química , Animais , Proteínas Cromossômicas não Histona/genética , DNA Helicases/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , RNA de Cadeia Dupla/química , Fatores de Transcrição/genética , Cromossomo X/genética
18.
J Mol Cell Biol ; 11(2): 170-181, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29750417

RESUMO

Serine/arginine (SR)-rich proteins are critical for the regulation of alternative splicing (AS), which generates multiple mRNA isoforms from one gene and provides protein diversity for cell differentiation and tissue development. Genetic evidence suggests that Drosophila genital-specific overexpression of SR-related nuclear matrix protein of 160 kDa (SRm160), an SR protein with a PWI RNA-binding motif, causes defective development only in male flies and results in abnormal male genital structures and abnormal testis. However, the molecular characterization of SRm160 is limited. Using the high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP) method in two sex-specific embryonic cell lines, S2 from the male and Kc from the female, we first identified the genome-wide RNA-binding characteristics of SRm160, which preferred binding to the exonic tri-nucleotide repeats GCA and AAC. We then validated this binding through both in vitro gel-shift assay and in vivo splicing of minigenes and found that SRm160 level affects AS of many transcripts. Furthermore, we identified 492 differential binding sites (DBS) of SRm160 varying between the two sex-specific cell lines. Among these DBS-containing genes, splicing factors were highly enriched, including transformer, a key regulator in the sex determination cascade. Analyses of fly mutants demonstrated that the SRm160 level affects AS isoforms of transformer. These findings shed crucial light on SRm160's RNA-binding specificity and regulation of AS in Drosophila sex determination and development.


Assuntos
Processamento Alternativo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Nucleares/genética , Diferenciação Sexual/genética , Fatores de Transcrição/metabolismo , Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Animais , Sequenciamento de Cromatina por Imunoprecipitação , Drosophila/genética , Drosophila/metabolismo , Isoformas de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo
19.
Genes Dev ; 30(24): 2710-2723, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28087715

RESUMO

Mutations in the U2 snRNP component SF3B1 are prominent in myelodysplastic syndromes (MDSs) and other cancers and have been shown recently to alter branch site (BS) or 3' splice site selection in splicing. However, the molecular mechanism of altered splicing is not known. We show here that hsh155 mutant alleles in Saccharomyces cerevisiae, counterparts of SF3B1 mutations frequently found in cancers, specifically change splicing of suboptimal BS pre-mRNA substrates. We found that Hsh155p interacts directly with Prp5p, the first ATPase that acts during spliceosome assembly, and localized the interacting regions to HEAT (Huntingtin, EF3, PP2A, and TOR1) motifs in SF3B1 associated with disease mutations. Furthermore, we show that mutations in these motifs from both human disease and yeast genetic screens alter the physical interaction with Prp5p, alter branch region specification, and phenocopy mutations in Prp5p. These and other data demonstrate that mutations in Hsh155p and Prp5p alter splicing because they change the direct physical interaction between Hsh155p and Prp5p. This altered physical interaction results in altered loading (i.e., "fidelity") of the BS-U2 duplex into the SF3B complex during prespliceosome formation. These results provide a mechanistic framework to explain the consequences of intron recognition and splicing of SF3B1 mutations found in disease.


Assuntos
RNA Helicases DEAD-box/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos/genética , RNA Helicases DEAD-box/genética , Humanos , Íntrons/genética , Mutação , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica/genética , Precursores de RNA/metabolismo , Splicing de RNA/genética , Ribonucleoproteína Nuclear Pequena U2/genética , Proteínas de Saccharomyces cerevisiae/genética , Spliceossomos/genética
20.
Methods Mol Biol ; 1297: 113-20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25895999

RESUMO

In RNA nanotechnology, construction of nanoparticles involves conjugation of functionalities, cross-linking of modules, labeling of RNA subunits, and chemical modification of nucleotides. Efficiency and sensitivity are important for the RNA labeling, which also can be used as probes in microarrays, Northern blotting, and gel-shift assays. Here, we describe a method for fluorescence labeling of short RNA at the 3'-end by oxidation. The 3'-terminus of in vitro-transcribed short RNA is oxidized by sodium periodate, and fluorescein-5-thiosemicarbazide is added after removal of excess oxidant. Purified short RNA with fluorescence is then applied for detection of RNA-protein interaction by gel-shift assay.


Assuntos
Nanopartículas/química , Nanotecnologia/métodos , RNA/química , Fluoresceína/química , Fluorescência , Oxirredução , Ácido Periódico/química , RNA/genética , Semicarbazidas/química , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...