Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(5): e2309376, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37914405

RESUMO

Covalent triazine frameworks (CTFs) are emerging as a promising molecular platform for photocatalysis. Nevertheless, the construction of highly effective charge transfer pathways in CTFs for oriented delivery of photoexcited electrons to enhance photocatalytic performance remains highly challenging. Herein, a molecular engineering strategy is presented to achieve highly efficient charge separation and transport in both the lateral and vertical directions for solar-to-formate conversion. Specifically, a large π-delocalized and π-stacked Schottky junction (Ru-Th-CTF/RGO) that synergistically knits a rebuilt extended π-delocalized network of the D-A1 -A2 system (multiple donor or acceptor units, Ru-Th-CTF) with reduced graphene oxide (RGO) is developed. It is verified that the single-site Ru units in Ru-Th-CTF/RGO act as effective secondary electron acceptors in the lateral direction for multistage charge separation/transport. Simultaneously, the π-stacked and covalently bonded graphene is regarded as a hole extraction layer, accelerating the separation/transport of the photogenerated charges in the vertical direction over the Ru-Th-CTF/RGO Schottky junction with full use of photogenerated electrons for the reduction reaction. Thus, the obtained photocatalyst has an excellent CO2 -to-formate conversion rate (≈11050 µmol g-1 h-1 ) and selectivity (≈99%), producing a state-of-the-art catalyst for the heterogeneous conversion of CO2 to formate without an extra photosensitizer.

2.
Nanotechnology ; 32(48)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34375959

RESUMO

In this study, we demonstrated a facile method to prepare a novel SnO2microporous rod with various microstructures by controlling NaOH molarities in precursor synthesis processes. Four different molarities of NaOH solution (0.005 M, 0.048 M, 0.12 M and 0.5 M) were used together with o-phthalic acid in Sn-MOF synthesis to determine the effect of ligand [o-C6H4CO222-] concentration on microstructure evolution. It was found that increasing NaOH molarity can effectively decrease the size of Sn-MOF rods. Then, the SnO2microporous rods were obtained by calcinating the as-prepared Sn-MOF as microstructures. Under an optimized experimental condition (NaOH molarity of 0.12 M), the SnO2rods shows a modest initial coulombic efficiency of 61.3% with a high reversible sodium storage capacity of 503 mAh g-1after 150 cycles at 50 mA g-1. Moreover, an impressive reversible sodium storage capacity of 206 mAh g-1can be obtained at long-term cycling performance (800 cycles at current density of 2 A g-1). Effects of morphologies to electrochemical performances have been further discussed in aspects of intrinsic resistance, pseudocapacitive contribution, surface area and porous structure and microstructural stability, and the enhanced electrochemical performance could be attributed to factors of enhanced pseudocapacitive charge contribution, optimized microstructures, and structural stability, which ensure the SnO2-0.12 M to have a good rate performance and cyclability. This nanoscale-engineering method adopted here could be a promising path to fabricate SnO2-based anodes with novel microstructures for sodium storage applications.

3.
Photochem Photobiol Sci ; 19(2): 289-298, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32022080

RESUMO

A new simple and easily synthesized multitarget sensor, (E)-N'-(4-(diethylamino)-2-hydroxybenzylidene)imidazo[2,1-b]thiazole-6-carbohydrazide (X), was designed and synthesized using imidazo[2,1-b]thiazole-6-carboxylic acid and 4-(diethylamino)-2-hydroxybenzaldehyde. X could be used as a sensor to detect In3+ in DMF-H2O buffer solution and detect Zn2+ in EtOH-H2O buffer solution through fluorescence enhancement with detection limits of 1.02 × 10-9 M and 5.5 × 10-9 M, respectively. X exhibited an efficient "off-on-off" fluorescence behavior by cyclic addition of metal ions (In3+ and Zn2+) and EDTA. The stoichiometry between X and metal ions (In3+ and Zn2+) was 1 : 1. The binding mode and sensing mechanism of X with metal ions (In3+ and Zn2+) was verified by theoretical calculations using Gaussian 09 based on B3LYP/6-31G(d) and B3LYP/LANL2DZ basis, respectively. Moreover, X could be applied as a potential sensor for the quantitative detection of In3+ and Zn2+ with a satisfactory recovery and relative standard deviation (RSD) in real water samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...