Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 629(Pt B): 511-521, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36174294

RESUMO

The huge volumetric expansion (>300 %) of Si that occurs during the charge-discharge process makes it to have poor cycling ability and weak stable structure. These factors are considered as critical obstacles to the further development of Si as anode for lithium-ion batteries (LIBs). Herein, novel 3D interpenetrating microspheres, i.e., Si@C-CNTs, which consist of silicon nanoparticles interpenetrated with carbon nanotubes (CNTs) and stuck with amorphous carbon (C) have been designed and prepared via a spray-drying assisted approach. As anode of LIBs, Si@C-CNTs microspheres can achieve high silicon loadings of around 86 % and a high initial coulomb efficiency of 80.8 %. The electrodes maintain a reversible specific capacity of 1585.9mAh/g at 500 mA g-1 after 200 cycles, and deliver an excellent rate capability of 756.4 mAh/g at 5 A g-1. The outstanding performance of Si@C-CNTs can be due to their 3D interpenetrating structure and the synergy effect between the CNTs network and amorphous carbon therein. They synergistically act as conductive matrices which significantly improve the conductivity of the composite; they also act binders and reinforcing skeleton which help the composite spheres to have stable structure. Especially, the latter (reinforcing skeleton) alleviates the volumetric effect induced by the expansion and shrinkage of silicon particles during lithiation. The unique architecture provides an ideal model that can be used to design Si-based composite anode for advanced LIBs.

2.
J Colloid Interface Sci ; 590: 580-590, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33581661

RESUMO

The synergetic effect between two or more electrochemically active materials usually leads to superior lithium-ion storage performance. This work demonstrates a straightforward and effective approach to synthesize a reduced graphene oxide (RGO) encapsulated larger goethite (FeOOH) nanoparticles and smaller tin dioxide (SnO2) quantum dots hierarchical composite (SnO2@FeOOH/RGO). The synthesized SnO2@FeOOH/RGO composite exhibits encouraging lithium-ion storage capability than controlled SnO2/RGO and FeOOH/RGO samples with a stable specific capacity of 638 mAh·g-1 under a high current rate of 1000 mA·g-1 for 2000 continual cycles and good rate performance. The redox reaction between reductive metal-atoms or metal-ions and graphene oxide (GO) sheets guarantees an effective immobilization of corresponding nano-sized metal oxide and hydroxide crystals by the RGO framework. Furthermore, the engineered larger FeOOH crystals engage in lithium-ion storage and perform an ideal spacer between the restacked RGO sheets. Therefore, smaller SnO2 quantum dots' inherent excellent rate capability is extensively promoted due to the improvement of electrolyte diffusion and electron transfer condition. The sample design and fabrication method in this work might be developed for broader applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...