Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(15)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35957148

RESUMO

Two-dimensional molybdenum disulfide (MoS2) has attracted significant attention for next-generation electronics, flexible devices, and optical applications. Chemical vapor deposition is the most promising route for the production of large-scale, high-quality MoS2 films. Recently, the chemical vapor deposition of MoS2 films on soda-lime glass has attracted great attention due to its low cost, fast growth, and large domain size. Typically, a piece of Mo foil or graphite needs to be used as a buffer layer between the glass substrates and the CVD system to prevent the glass substrates from being fragmented. In this study, a novel method was developed for synthesizing MoS2 on glass substrates. Inert Al2O3 was used as the buffer layer and high-quality, uniform, triangular monolayer MoS2 crystals with domain sizes larger than 400 µm were obtained. To demonstrate the advantages of glass/Al2O3 substrates, a direct comparison of CVD MoS2 on glass/Mo and glass/Al2O3 substrates was performed. When Mo foil was used as the buffer layer, serried small bilayer islands and bright core centers could be observed on the MoS2 domains at the center and edges of glass substrates. As a control, uniform MoS2 crystals were obtained when Al2O3 was used as the buffer layer, both at the center and the edge of glass substrates. Raman and PL spectra were further characterized to show the merit of glass/Al2O3 substrates. In addition, the thickness of MoS2 domains was confirmed by an atomic force microscope and the uniformity of MoS2 domains was verified by Raman mapping. This work provides a novel method for CVD MoS2 growth on soda-lime glass and is helpful in realizing commercial applications of MoS2.

2.
Inorg Chem ; 51(7): 4170-9, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22416761

RESUMO

The coordination chemistry of an N-heterocyclic phosphenium (NHP)-containing bis(phosphine) pincer ligand has been explored with Pt(0) and Pd(0) precursors. Unlike previous compounds featuring monodentate NHP ligands, the resulting NHP Pt and Pd complexes feature pyramidal geometries about the central phosphorus atom, indicative of a stereochemically active lone pair. Structural, spectroscopic, and computational data suggest that the unusual pyramidal NHP geometry results from two-electron reduction of the phosphenium ligand to generate transition metal complexes in which the Pt or Pd centers have been formally oxidized by two electrons. Interconversion between planar and pyramidal NHP geometries can be affected by either coordination/dissociation of a two-electron donor ligand or two-electron redox processes, strongly supporting an isolobal analogy with the linear (NO(+)) and bent (NO(-)) variations of nitrosyl ligands. In contrast to nitrosyls, however, these new main group noninnocent ligands are sterically and electronically tunable and are amenable to incorporation into chelating ligands, perhaps representing a new strategy for promoting redox transformations at transition metal complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...