Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Recent Pat Nanotechnol ; 18(2): 117-129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37005510

RESUMO

BACKGROUND: Electrochromic materials can dynamically change their optical properties (such as transmittance, absorbance, and reflectance under the action of an applied voltage, and their research and application in the visible band have been widely concerned. In recent years, with the continuous development of electrochromic technology, the related research has been gradually extended to the infrared region. OBJECTIVE: This invited review aims to provide an overview of the current status of several inorganic infrared electrochromic materials, to provide some references for future research, and to promote the research and application of electrochromic technology in the infrared region. METHODS: This review summarizes various research results in the field of infrared electrochromic, which includes a detailed literature review and patent search. Starting from the key performance parameters and device structure characteristics of infrared electrochromic devices (ECDs), the research and progress of several types of inorganic infrared electrochromic materials, including metal oxides, plasma nanocrystals, and carbon nanomaterials, are mainly presented, and feasible optimization directions are also discussed. CONCLUSION: We believe that the potential of these materials for civilian and military applications, for example, infrared electrochromic smart windows, infrared stealth/disguise, and thermal control of spacecraft, can be fully exploited by optimizing the materials and their devices to improve their performance.

2.
J Agric Food Chem ; 71(41): 15087-15096, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37814441

RESUMO

This study aimed to investigate the effects of the lychee pulp-derived dietary fiber-bound phenolic complex (DF-BPC) on a murine model of loperamide-induced constipation and its molecular mechanism associated with gut microbiota modification. DF-BPC supplementation mitigated loperamide-induced dyschezia, intestinal hypomotility, and colonic impairment, as evidenced by the increased gastro-intestinal transit rate and mucus cell counts. By comparison, short-chain fatty acids (SCFAs) contents and relative abundances of associated genera (Butyricimonas, Clostridium, and Lactobacillus) were effectively upregulated following DF-BPC supplementation. Notably, DF-BPC significantly enhanced expressions of G protein-coupled receptor (GPR) 41 and 43, reaching 1.43- and 1.62-fold increase, respectively. Neurotransmitter secretions were simultaneously altered in DF-BPC-treated mice, suggesting upregulation of the SCFAs-GPRs-enteric nervous system pathway. The overexpression of aquaporins (AQP3, 8, and 9) was stimulated partly through GPRs activation. Mild inflammation associated with constipation was inhibited by suppressing LBP-TLR4-NF-κB signaling translocation. These findings suggest that DF-BPC from lychee pulp has the potential to alleviate constipation in mice through modifying the gut microbiome.


Assuntos
Aquaporinas , Microbioma Gastrointestinal , Litchi , Camundongos , Animais , Loperamida/efeitos adversos , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico , Ácidos Graxos Voláteis/farmacologia , Fibras na Dieta , Aquaporinas/genética
3.
Nanomaterials (Basel) ; 11(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34835811

RESUMO

Silver nanowire (AgNW) conductive film fabricated by solution processing was investigated as an alternative to indium tin oxide (ITO) in flexible transparent electrodes. In this paper, we studied a facile and effective method by electrodepositing Al2O3 on the surface of AgNWs. As a result, flexible transparent electrodes with improved stability could be obtained by electrodepositing Al2O3. It was found that, as the annealing temperature rises, the Al2O3 coating layer can be transformed from Al2O3·H2O into a denser amorphous state at 150 °C. By studying the increase of electrodeposition temperature, it was observed that the transmittance of the AgNW-Al2O3 composite films first rose to the maximum at 70 °C and then decreased. With the increase of the electrodeposition time, the figure of merit (FoM) of the composite films increased and reached the maximum when the time was 40 s. Through optimizing the experimental parameters, a high-stability AgNW flexible transparent electrode using polyimide (PI) as a substrate was prepared without sacrificing optical and electrical performance by electrodepositing at -1.1 V and 70 °C for 40 s with 0.1 mol/L Al(NO3)3 as the electrolyte, which can withstand a high temperature of 250 °C or 250,000 bending cycles with a bending radius of 4 mm.

4.
Micromachines (Basel) ; 12(9)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34577688

RESUMO

The praseodymium-doped indium-zinc-oxide (PrIZO) thin film transistor (TFT) shows broad application prospects in the new generation of display technologies due to its high performance and high stability. However, traditional device performance evaluation methods need to be carried out after the end of the entire preparation process, which leads to the high-performance device preparation process that takes a lot of time and costs. Therefore, there is a lack of effective methods to optimize the device preparation process. In this paper, the effect of sputtering oxygen partial pressure on the properties of PrIZO thin film was studied, and the quality of PrIZO thin film was quickly evaluated by the microwave photoconductivity decay (µ-PCD) method. The µ-PCD results show that as the oxygen partial pressure increases, the peak first increases and then decreases, while the D value shows the opposite trend. The quality of PrIZO thin film prepared under 10% oxygen partial pressure is optimal due to its low localized defect states. The electric performance of PrIZO TFTs prepared under different oxygen partial pressures is consistent with the µ-PCD results. The optimal PrIZO TFT prepared under 10% oxygen partial pressure exhibits good electric performance with a threshold voltage (Vth) of 1.9 V, a mobility (µsat) of 24.4 cm2·V-1·s-1, an Ion/Ioff ratio of 2.03 × 107, and a subthreshold swing (SS) of 0.14 V·dec-1.

5.
Bioengineered ; 12(1): 6952-6966, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34516353

RESUMO

Primary liver cancer is the sixth most common cancer and the third leading cause of malignancy-related death worldwide in 2020, with 75-85% of hepatocellular carcinoma (HCC). Evidences have verified that long noncoding RNAs (lncRNAs) play key roles in HCC onset and development. However, the function and mechanism of lncRNA insulin-like growth factor 2-antisense (IGF2-AS) in HCC remain unclear. Herein, IGF2-AS expression profile in HCC patients was first investigated based on The Cancer Genome Atlas (TCGA) database and local HCC patients, followed by prognostic value evaluation using Kaplan-Meier method; then, the bioinformatics analysis, dual-luciferase reporter assay, Spearman correlation assay, function gain, and loss with rescue experiments were applied to investigate the biological function and the involved molecular mechanisms of IGF2-AS in HCC oncogenesis and development. Our results showed that IGF2-AS expression was significantly down-regulated in HCC cells and tissues; lower IGF2-AS expression was significantly associated with poor prognosis of HCC patients; IGF2-AS over-expression inhibited the viability, colony formation, invasion, and migration, while promoted apoptosis in vitro, and inhibited HCC xenograft growth in vivo; IGF2-AS sponged microRNA-520h (miR-520h) to up-regulate IGF2-AS expression, and miR-520h over-expression or cyclin-dependent kinase inhibitor 1A (CDKN1A) silencing reversed IGF2-AS reduced aggressive behaviors of HCC cells. In conclusion, IGF2-AS is a tumor-suppressor in HCC, and lower IGF2-AS expression is associated with poor prognosis of HCC patients; IGF2-AS inhibits HCC oncogenesis and development by IGF2-AS/miR-520h/CDKN1A pathway. Therefore, IGF2-AS may serve as a new biomarker for HCC management.


Assuntos
Carcinoma Hepatocelular , Inibidor de Quinase Dependente de Ciclina p21/genética , Neoplasias Hepáticas , MicroRNAs/genética , Proteínas/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Humanos , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Proteínas/metabolismo , Transdução de Sinais/genética , Transcriptoma/genética
6.
Membranes (Basel) ; 11(8)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34436371

RESUMO

Amorphous metal oxide has been a popular choice for thin film material in recent years due to its high uniformity. The dielectric layer is one of the core materials of the thin film transistor (TFT), and it affects the ability of charges storage in TFT. There is a conflict between a high relative dielectric constant and a wide band gap, so we solved this problem by using multiple metals to increase the entropy of the system. In this paper, we prepared zirconium-yttrium-aluminum-magnesium-oxide (ZYAMO) dielectric layers with a high relative dielectric constant using the solution method. The basic properties of ZYAMO films were measured by an atomic force microscope (AFM), an ultraviolet-visible spectrophotometer (UV-VIS), etc. It was observed that ZYAMO thin films had a larger optical band when the annealing temperature increased. Then, metal-insulator-metal (MIM) devices were fabricated to measure the electrical properties. We found that the leakage current density of the device is relatively lower and the ZYAMO thin film had a higher relative dielectric constant as the concentration went up. Finally, it reached a high relative dielectric constant of 56.09, while the leakage current density was no higher than 1.63 × 10-6 A/cm2@ 0.5 MV/cm at 1.0 M and 400 °C. Therefore, the amorphous ZYAMO thin films has a great application in the field of high permittivity request devices in the future.

7.
Membranes (Basel) ; 11(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946591

RESUMO

High-performance amorphous oxide semiconductor thin film transistors (AOS-TFT) with copper (Cu) electrodes are of great significance for next-generation large-size, high-refresh rate and high-resolution panel display technology. In this work, using rare earth dopant, neodymium-doped indium-zinc-oxide (NdIZO) film was optimized as the active layer of TFT with Cu source and drain (S/D) electrodes. Under the guidance of the Taguchi orthogonal design method from Minitab software, the semiconductor characteristics were evaluated by microwave photoconductivity decay (µ-PCD) measurement. The results show that moderate oxygen concentration (~5%), low sputtering pressure (≤5 mTorr) and annealing temperature (≤300 °C) are conducive to reducing the shallow localized states of NdIZO film. The optimized annealing temperature of this device configuration is as low as 250 °C, and the contact resistance (RC) is modulated by gate voltage (VG) instead of a constant value when annealed at 300 °C. It is believed that the adjustable RC with VG is the key to keeping both high mobility and compensation of the threshold voltage (Vth). The optimal device performance was obtained at 250 °C with an Ion/Ioff ratio of 2.89 × 107, a saturation mobility (µsat) of 24.48 cm2/(V·s) and Vth of 2.32 V.

8.
Membranes (Basel) ; 12(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35054555

RESUMO

Flexible and fully transparent thin film transistors (TFT) were fabricated via room temperature processes. The fabricated TFT on the PEN exhibited excellent performance, including a saturation mobility (µsat) of 7.9 cm2/V·s, an Ion/Ioff ratio of 4.58 × 106, a subthreshold swing (SS) of 0.248 V/dec, a transparency of 87.8% at 550 nm, as well as relatively good stability under negative bias stress (NBS) and bending stress, which shows great potential in smart, portable flexible display, and wearable device applications.

9.
BMC Chem ; 13(1): 27, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31384775

RESUMO

BACKGROUND: Lychee pericarp is rich in phenolic and has good antioxidant activity. The effects of simulated gastric (SGF) and intestinal fluid (SIF) digestion on the contents, composition, and antioxidant activities of the phenolic substances in the pericarp of different lychee cultivars (cv Jizui, Lizhiwang, Guiwei, Yuhe, Nuomici and Guihong) were investigated. RESULTS: Compared with distilled water (DW) treatment, the total phenolic content (TPC) and total flavonoid content (TFC) in the pericarp of different lychee cultivars decreased after SGF digestion; especially, the TFC in "Lizhiwang" decreased by 41.5%. The TPC and TFC of lychee pericarp also decreased after SIF digestion. However, the TPC in "Jizui", "Guiwei" and "Yuhe" increased. The SGF and SIF also had different effects on the FRAP and ABTS antioxidant activities of different lychee cultivars. The SGF digestion decreased the ABTS antioxidant capacity of lychee pericarp but enhanced the FRAP value of some lychee cultivars. However, the SIF digestion decreased the FRAP antioxidant activity of different lychee cultivar pericarps but enhanced the ABTS antioxidant capacity of lychee. The HPLC results showed that lychee pericarp had relatively high contents of procyanidin B2 and procyanidin A2. After SIF digestion, caffeic acid and isoquercitrin could not be detected in any of the lychee varieties. However, quercetin-3-rutinose-7-rhamnoside and isoquercitrin were increased after SGF digestion. CONCLUSIONS: Lychee pericarp could be used as an inexpensive functional food ingredient.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...