Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(25): e202300204, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36941243

RESUMO

A key challenge for electrochemical nitrogen reduction reactions (NRR) is the difficulty for conventional catalysts to achieve high currents at low H* coverage to produce appreciable NH3 . Herein, we specially designed an Au nanoparticle-embedded ZnSe photo-electrode to solve the problem. As-designed photo-electrode achieves excellent NRR performance with a high NH3 yield (12.2 µg cm-2 h-1 ) and Faradaic efficiency (27.3 %). Our work reveals that the unique plasmon resonance effect of embedded Au nanoparticles plays a key role in increasing catalytic current when the H* coverage is decreased. Moreover, we successfully established a correlation between H* coverage and NRR performance based on theoretical calculations and experimental observations. This work paves the path for the future design of catalytic materials to overcome the selectivity and yield challenge of sustainable NH3 production.

2.
Nanotechnology ; 33(12)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34875640

RESUMO

Molecular dynamics simulation is adopted to discover the formation mechanism of silicon vacancy color center and to study the damage evolution in 4H-SiC during helium ion implantation with different annealing temperatures. The number and distribution of silicon vacancy color centers during He ion implantation can be more accurately simulated by introducing the ionization energy loss during implantation. A new method for numerical statistic of silicon vacancy color centers is proposed, which takes into account the structure around the color centers and makes statistical results more accurate than the Wigner-Seitz defect analysis method. Meanwhile, the photoluminescence spectra of silicon vacancy color centers at different helium ion doses are characterized to verify the correctness of the numerical analysis. The new silicon vacancy color center identification method can help predicting the optimal annealing temperature for silicon vacancy color centers, and provide guidance for subsequent color center annealing experiments.

3.
Micromachines (Basel) ; 13(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35056200

RESUMO

Atomic probe tomography (APT) samples with Al/Ni multilayer structure were successfully prepared by using a focused ion beam (FIB), combining with a field emission scanning electron microscope, with a new single-wedge lift-out method and a reduced amorphous damage layer of Ga ions implantation. The optimum vertex angle and preparation parameters of APT sample were discussed. The double interdiffusion relationship of the multilayer films was successfully observed by the local electrode APT, which laid a foundation for further study of the interface composition and crystal structure of the two-phase composites.

4.
Eur J Radiol ; 134: 109466, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33307459

RESUMO

PURPOSE: Accurate glioma grading and IDH mutation status prediction are critically essential for individualized preoperative treatment decisions. This study aims to compare the diagnostic performance of magnetic resonance (MR) amide proton transfer (APT) and diffusion kurtosis imaging (DKI) in glioma grading and IDH mutation status prediction. METHOD: Fifty-one glioma patients without treatment were retrospectively included. APT-weighted (APTw) effect and DKI indices, including mean diffusivity (MD), fractional anisotropy (FA), mean kurtosis (MK), and kurtosis FA (KFA) were obtained from APT and diffusion-weighted images, respectively. DKI indices in tumors were normalized to that in contralateral normal appearing white matter (CNAWM) and the APTw difference (ΔAPTw) between the two regions was calculated. Student's t-test, one-way ANOVA and ROC analyses were conducted. RESULTS: Among the enrolled 51 patients, 13 had glioma-II, 17 had glioma-III and 21 had glioma-IV. 25 patients were diagnosed as IDH-mutant, and 26 as IDH-wild type. MD and MK differed significantly between glioma-IV and glioma II/III (P < 0.05), but not between glioma-II and glioma-III. FA and KFA showed no significant difference among the three groups (P > 0.05). IDH-mutant group exhibited significantly higher MD and lower FA, MK and ΔAPTw than IDH-wild type (P < 0.05), whereas the two groups showed comparable KFA values. In contrast, ΔAPTw differed significantly across tumor grades and IDH mutation status (P < 0.05), with consistently better discriminatory performance than DKI indices in glioma grading and IDH mutation status prediction. CONCLUSIONS: APT imaging was superior to DKI in glioma grading and IDH mutation status prediction, benefiting accurate diagnoses and treatment decisions.


Assuntos
Neoplasias Encefálicas , Glioma , Amidas , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Imagem de Difusão por Ressonância Magnética , Glioma/diagnóstico por imagem , Glioma/genética , Humanos , Espectroscopia de Ressonância Magnética , Mutação , Gradação de Tumores , Prótons , Estudos Retrospectivos
5.
Chaos ; 29(10): 103129, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31675833

RESUMO

Integrable and nonintegrable discrete nonlinear Schrödinger equations (NLS) are significant models to describe many phenomena in physics. Recently, Ablowitz and Musslimani introduced a class of reverse space, reverse time, and reverse space-time nonlocal integrable equations, including the nonlocal NLS equation, nonlocal sine-Gordon equation, nonlocal Davey-Stewartson equation, etc. Moreover, the integrable nonlocal discrete NLS has been exactly solved by inverse scattering transform. In this paper, we study a nonintegrable discrete nonlocal NLS, which is a direct discrete version of the reverse space nonlocal NLS. By applying discrete Fourier transform and modified Neumann iteration, we present its stationary solutions numerically. The linear stability of the stationary solutions is examined. Finally, we study the Cauchy problem for the nonlocal NLS equation numerically and find some different and new properties on the numerical solutions comparing with the numerical solutions of the Cauchy problem for the NLS equation.

6.
Micromachines (Basel) ; 9(7)2018 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-30424294

RESUMO

The defects and subsurface damages induced by crystal growth and micro/nano-machining have a significant impact on the functional performance of machined products. Raman spectroscopy is an efficient, powerful, and non-destructive testing method to characterize these defects and subsurface damages. This paper aims to review the fundamentals and applications of Raman spectroscopy on the characterization of defects and subsurface damages in micro/nano-machining. Firstly, the principle and several critical parameters (such as penetration depth, laser spot size, and so on) involved in the Raman characterization are introduced. Then, the mechanism of Raman spectroscopy for detection of defects and subsurface damages is discussed. The Raman spectroscopy characterization of semiconductor materials' stacking faults, phase transformation, and residual stress in micro/nano-machining is discussed in detail. Identification and characterization of phase transformation and stacking faults for Si and SiC is feasible using the information of new Raman bands. Based on the Raman band position shift and Raman intensity ratio, Raman spectroscopy can be used to quantitatively calculate the residual stress and the thickness of the subsurface damage layer of semiconductor materials. The Tip-Enhanced Raman Spectroscopy (TERS) technique is helpful to dramatically enhance the Raman scattering signal at weak damages and it is considered as a promising research field.

7.
Beilstein J Nanotechnol ; 6: 2069-77, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26665078

RESUMO

Many factors influence the near-field visualization of plasmonic structures that are based on perforated elliptical slits. Here, characterization errors are experimentally analyzed in detail from both fabrication and measurement points of view. Some issues such as geometrical parameter, probe-sample surface interaction, misalignment, stigmation, and internal stress, have influence on the final near-field probing results. In comparison to the theoretical ideal case of near-field probing of the structures, numerical calculation is carried out on the basis of a finite-difference and time-domain (FDTD) algorithm so as to support the error analyses. The analyses performed on the basis of both theoretical calculation and experimental probing can provide a helpful reference for the researchers probing their plasmonic structures and nanophotonic devices.

8.
Artigo em Inglês | MEDLINE | ID: mdl-26172767

RESUMO

A Kadomtsev-Petviashvili- (KP-) type equation appears in fluid mechanics, plasma physics, and gas dynamics. In this paper, we propose an integrable semidiscrete analog of a coupled (2+1)-dimensional system which is related to the KP equation and the Zakharov equation. N-soliton solutions of the discrete equation are presented. Some interesting examples of soliton resonance related to the two-soliton and three-soliton solutions are investigated. Numerical computations using the integrable semidiscrete equation are performed. It is shown that the integrable semidiscrete equation gives very accurate numerical results in the cases of one-soliton evolution and soliton interactions.

9.
Adv Mater ; 27(4): 740-5, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25387696

RESUMO

CdS nanoflake arrays (NFAs) exhibit unprecedented light absorption capability, and they can serve as a scaffold to load thin organic absorbers for extraordinarily high light absorption. As a result, the hybrid solar cell consisting of NFAs and organic absorber yields a ten-times high short-circuit photocurrent compared to the counterpart device with a common planar structure.

10.
Nanoscale Res Lett ; 7(1): 399, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22804810

RESUMO

A novel method with high flexibility and efficiency for developing SERS substrates is proposed by patterning nanostructures on Si substrates using focused ion beam direct writing (FIBDW) technology following with precise thermal evaporation of gold film on the substrate. The effect of SERS on the substrate was systematically investigated by optimizing the processing parameters and the gold film thickness. The results proved that small dwell time could improve the machining accuracy and obtain smaller nanogap. The Raman-enhanced performance of the substrate was investigated with 10-6mol/L Rhodamine 6 G solution. It was indicated that the elliptic nanostructures with 15-nm spacing on Si substrates, coated with approximately 15-nm thick gold film, have exhibited a high-enhanced performance, but dramatic performance degradation was found as the gold film thickness further increased, which most probably resulted from changes of the nanostructures' morphology such as elliptical tip and spacing. To avoid the morphological changes effectively after depositing gold film, optimization design of the nanostructures for FIBDW on Si substrates was proposed. Besides, a similar phenomenon was found when the gold film was less than 15nm because there was little gold remaining on the substrate. The method proposed in this paper shows a great potential for the higher performance SERS substrates development, which can further reduce the spacing between hot spots.

11.
Opt Express ; 18(4): 3438-43, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20389353

RESUMO

A plasmonic lens with metallic chirped circular nanoslits corrugated on Au film supported on quartz substrate for the purpose of superfocusing was put forth and fabricated by means of focused ion beam direct milling technique. Topography of the lens was imaged using an atomic force microscope. After that a near-field scanning optical microscope was employed for optical characterization of focusing performance of the lens. Our experimental results verify the focusing performance and further demonstrate that they are in agreement with the theoretical calculation results. Focusing performance is significantly improved in comparison to that of the non-chirped lens. The lenses are possible to be used for the applications of bioimaging, detection, and inspection in submicron scale resolution.


Assuntos
Lentes , Nanotecnologia/instrumentação , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
12.
Biochem Biophys Res Commun ; 346(4): 1228-33, 2006 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-16806082

RESUMO

Double minute chromosomes (DMs) are acentric, autonomously replicating extra-chromosomes and frequently mediate gene amplification in tumor and drug resistant cells. Atomic force microscopy (AFM) is a powerful tool in microbiology. We used AFM to explore the ultrastructure of DMs in mouse fibroblasts 3T3R500. DMs in various phases of cell cycle were also studied in order to elucidate the mechanisms of their duplication and separation. Metaphase spread and induced premature condensed chromosomes (PCCs) were observed under the AFM. DMs were detected to be composed of two compact spheres linked by fibers. The fibers of DMs directly connected with metaphase chromosomes were observed. Many single-minutes and few DMs were detected in G1 PCCs, while more DMs were detected in S PCCs than in G1 PCCs. Besides, all of the DMs in G2 PCCs were coupled. Our present results suggested that DMs might divide into single-minutes during or before G1-phase, followed by duplication of the single-minutes in S-phase. Moreover, we introduced a new powerful tool to study DMs and got some ideal results.


Assuntos
Aberrações Cromossômicas/efeitos dos fármacos , Resistência a Medicamentos/genética , Metotrexato/farmacologia , Microscopia de Força Atômica , Animais , Amplificação de Genes , Humanos , Camundongos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...