Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiother Oncol ; 114(2): 161-6, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25497558

RESUMO

PURPOSE: The objective of this study was to evaluate the efficacy and safety of Endostar combined with concurrent chemoradiotherapy (CCRT) in patients with stage III non-small-cell lung cancer (NSCLC). METHODS: Patients with unresectable stage III NSCLC were treated with Endostar (7.5mg/m(2)/d) for 7days at weeks 1, 3, 5, and 7, while two cycles of docetaxel (65mg/m(2)) and cisplatin (65mg/m(2)) were administered on days 8 and 36, with concurrent thoracic radiation to a dose of 60-66Gy. Primary end points were short-term efficacy and treatment-related toxicity. RESULTS: Fifty patients were enrolled into the study, and 48 were assessable. Of the 48 patients, 83% had stage IIIB and 65% had N3 disease. Median follow-up was 25.0months. Overall response rate was 77%. The estimated median progression-free survival (PFS) was 9.9months, and the estimated median overall survival (OS) was 24.0months. The 1-, 2-, and 3-year local control rates were 75%, 67%, and 51%, PFS rates were 48%, 27%, and 16%, and OS rates were 81%, 50%, and 30%, respectively. All toxicities were tolerable with proper treatment. CONCLUSIONS: The combination of Endostar with CCRT for locally advanced NSCLC patients was feasible and showed promising survival and local control rates.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Adulto , Idoso , Carcinoma Pulmonar de Células não Pequenas/patologia , Quimiorradioterapia , Cisplatino/administração & dosagem , Intervalo Livre de Doença , Docetaxel , Endostatinas/administração & dosagem , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Estudos Prospectivos , Taxa de Sobrevida , Taxoides/administração & dosagem
2.
J Biol Chem ; 289(44): 30785-30799, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25225287

RESUMO

Pigment epithelium-derived factor (PEDF), a potent antiangiogenesis agent, has recently attracted attention for targeting tumor cells in several types of tumors. However, less is known about the apoptosis-inducing effect of PEDF on human lung cancer cells and the underlying molecular events. Here we report that PEDF has a growth-suppressive and proapoptotic effect on lung cancer xenografts. Accordingly, in vitro, PEDF apparently induced apoptosis in A549 and Calu-3 cells, predominantly via the Fas-L/Fas death signaling pathway. Interestingly, A549 and Calu-3 cells are insensitive to the Fas-L/Fas apoptosis pathway because of the low level of cell surface Fas. Our results revealed that, in addition to the enhancement of Fas-L expression, PEDF increased the sensitivity of A549 and Calu-3 cells to Fas-L-mediated apoptosis by triggering the translocation of Fas protein to the plasma membrane in a p53- and FAP-1-dependent manner. Similarly, the up-regulation of Fas-L by PEDF was also mediated by p53. Furthermore, peroxisome proliferator-activated receptor γ was determined to be the upstream regulator of p53. Together, these findings uncover a novel mechanism of tumor cell apoptosis induced by PEDF and provide a potential therapeutic strategy for tumors that are insensitive to Fas-L/Fas-dependent apoptosis because of a low level of cell surface Fas.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Proteínas do Olho/farmacologia , Proteína Ligante Fas/genética , Fatores de Crescimento Neural/farmacologia , Serpinas/farmacologia , Proteína Supressora de Tumor p53/fisiologia , Receptor fas/metabolismo , Animais , Antineoplásicos/uso terapêutico , Caspase 8/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteínas do Olho/fisiologia , Proteínas do Olho/uso terapêutico , Proteína Ligante Fas/metabolismo , Humanos , Neoplasias Pulmonares , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Patológica/prevenção & controle , Fatores de Crescimento Neural/fisiologia , Fatores de Crescimento Neural/uso terapêutico , PPAR gama/metabolismo , Transporte Proteico , Proteína Tirosina Fosfatase não Receptora Tipo 13/metabolismo , Serpinas/fisiologia , Serpinas/uso terapêutico , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
3.
PLoS One ; 7(12): e53152, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300882

RESUMO

We had demonstrated that plasminogen kringle 5 (K5), a potent angiogenic inhibitor, inhibited retinal neovascularization and hepatocellular carcinoma growth by anti-angiogenesis. The current study investigated the effects and the underlying mechanisms of K5 on both tumor growth and spontaneous pulmonary metastasis in Lewis lung carcinoma (LLC) implanted mouse model. Similarly, K5 could decrease expression of VEGF in LLC cells and grafted tissues and suppress tumor angiogenesis and growth. K5 had no direct effect on proliferation and apoptosis of LLC. However, K5 could significantly inhibit SDF-1α-induced chemotaxis movement of LLC cells and resulted in a great reduction of surface metastatic nodules and micrometastases in the lungs of LLC tumor-bearing mice. K5 also decreased expression of chemokine (C-X-C motif) receptor 4 (CXCR4) in LLC cells and grafted tissues. Furthermore, K5 down-regulated SDF-1α expression in metastatic lung tissues of LLC-bearing mice. Therefore, K5 may suppress tumor pulmonary metastasis through inhibiting SDF-1α-CXCR4 chemotaxis movement and down-regulation of VEGF. Moreover, the role of hypoxia inducible factor-1α (HIF-1α), a crucial transcriptional factor for both VEGF and CXCR4 expression, was evaluated. The siRNA of HIF-1α attenuated expression of VEGF and CXCR4 and inhibited LLC migration. K5 decreased HIF-1α protein level and impaired nuclear HIF-1α accumulation. These results showed for the first time that K5 inhibits LLC growth and metastasis via the dual effects of anti-angiogenesis and suppression of tumor cell motility by targeting the pivotal molecule, HIF-1α.


Assuntos
Inibidores da Angiogênese/farmacologia , Carcinoma Pulmonar de Lewis/metabolismo , Quimiotaxia/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/metabolismo , Neovascularização Patológica/metabolismo , Fragmentos de Peptídeos/farmacologia , Plasminogênio/farmacologia , Transdução de Sinais/efeitos dos fármacos , Inibidores da Angiogênese/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Lewis/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimiocina CXCL12/metabolismo , Regulação para Baixo/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Transplante de Neoplasias , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Fragmentos de Peptídeos/uso terapêutico , Plasminogênio/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...