Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33983797

RESUMO

Head lettuce (Lactuca sativa L.) is an important crop for fresh consumption in China. In Shandong Province, head lettuce is planted in spring and in autumn each year. Because of the on-and-off rain for three weeks, head lettuce plants planted directly into the field in Jiyang City, in July 2017, 20% of the plants rapidly showed symptoms of rotting, water-soaked lesions on roots and stem bases, and then death. The diseased plants first appeared in low-lying areas prone to water accumulation. One-millimeter pieces were excised from water-soaked roots and stem bases, dipped in a 0.2% calcium hypochlorite solution for 10 min, then placed on V8 medium, and incubated in the dark at 28°C for 5 d. Two Pythium-like strains were isolated from the roots and stems. The isolates transferred to CMA and grown for 7 d, and the morphological characteristics of the two isolates on corn meal agar (CMA) were white with dense, cottony, aerial and well-branched mycelia. The two isolates produced sporangia, oogonia, antheridia and oospores. Most of the sporangia were lobate. The oogonia were smooth, nearly globose and terminal. Oospores were globose, smooth and aplerotic. The average dimensions of 50 oogonia and oospores respectively ranged from 19.5 to 25.2 (av. 23.1) µm and 17.8 to 22.3 (av. 19.9) µm. The antheridia were broadly sac-shaped. The isolates morphological characteristics were consistent with P. aphanidermatum (van der Plaats-Niterink, 1981). The COI gene and ITS region of the rDNA were amplified and sequenced using primers FM55/FM52R (Long et al. 2012) and ITS1/ITS4 (White et al. 1990), respectively. The two aligned COI sequences were identical for both isolates, as were the two ITS sequences. BLASTn analysis of the 1,133-bp COI sequence (accession no. MT952703) resulted in a 100% identity with accession number AY129164 from Lactuca sativa, which belongs to P. aphanidermatum, and the 808-bp ITS sequence (accession no. MT921597) showed a 99% identity with Genbank accession number HQ643442 belonging to P. aphanidermatum. Koch's postulates were conducted by first soaking corn kernels for 24 h in water, and then autoclaving for 2 h at 121˚C. Isolate SDHL-1 was grown on CMA for 10 days, after which agar plugs were transferred to the sterilized corn kernels and incubated at 28℃ for approximately 15 d, until the corn kernels were covered in white hyphae. Ten healthy head lettuce plants were transplanted into a sterilized loam potting soil artificially infested with the corn inoculum (3 g inoculum per 100 g loam mixture). Inoculated plants and noninoculated controls were maintained in a greenhouse at 28°C and 100% relative humidity with a 12-h photoperiod; the experiment was repeated once. All twenty inoculated plants exhibited symptoms within one week similar to those observed. Pythium aphanidermatum was recovered only from the water-soaked roots and stem bases of inoculated plants and the re-isolated cultures again identified based on morphological characteristics and sequencing of the ITS and COI genes. No symptoms were observed on the control plants. Sclerotinia sclerotiorum is reported to cause stem base rot of L. sativa in China (Zhou et al. 2011). To our knowledge, however, this is the first report of root rot of head lettuce caused by Pythium aphanidermatum. Identification of the pathogen will assist in devising strategies to reduce yield loss.

2.
Plant Dis ; 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32820675

RESUMO

American ginseng (Panax quinquefolius) is a perennial herb whose dried roots are used for health care products, medicine, and food in China (Yuan et al. 2010). Shandong Province is the main area growing American ginseng and contributes more than 50% of the production in China. Wendeng city, located in the east of Shandong Peninsula, is the primary production area of American ginseng in Shandong Province since it has four distinct seasons, sufficient light, loose soil (pH 5.5~7.0), and with thus a similar geographical environment and climate conditions to the American ginseng production area of the United States and Canada. In March 2016, 2-year old American ginseng plants that were planted directly into the ground in the greenhouses in Wendeng city, contained up to 6-10% stunted plants. Water-soaked lesions were observed on the crowns and the tips of fine roots. The leaves of the infected plants became scalded, dark green starting at the top of the plants and gradually move downward. Moreover, the leaves and petioles gradually curled withered and drooped, and the whole plant collapsed. Tissue samples, 10 mm in size, were excised from the water-soaked roots and crowns of diseased plants, rinsed under running water for 24 hours, dipped in a 0.2% calcium hypochlorite solution for 10 minutes, placed on sterile filter paper to dry and then placed on V8 medium (200 mL V8 Campbell Soup, 15 g agar, 0.2 g CaCO3, and 1 L distilled water) and incubated in the dark at 28 °C for 5 days. Five Pythium-like isolates which were arachnoid-cottony on cornmeal agar were isolated and they all produced hyphal swellings, oogonia, antheridia and oospores. Oospores were globose, smooth and plerotic, with some being aplerotic. The dimensions of hyphal swellings, oogonia and oospores respectively ranged from 9.0 to 21.3 (average 14.1) µm, 12.9 to 22.5 (average 18.2) µm, and 12.5 to 20.5 (average 16.7) µm. Finger-like projections were uniformly distributed on the walls of the oogonia and the antheridia were curved rods. The five Pythium-like isolates were identified as P. spinosum based on morphological characteristics (van der Plaats-Niterink, 1981). Genomic DNA was extracted from the isolates of the Pythium sp. using a DNA extraction kit (OMEGA, U.S.A.). The cytochrome c oxidase subunit I (COI) gene and internal transcribed spacer (ITS) region rDNA were amplified and sequenced using primers FM55/FM52R (Long et al. 2012) and ITS1/ITS4, respectively (White et al.1990). The five COI sequences were aligned and were identical for all five isolates, as well as the five ITS sequences. BLASTn analysis of the 538-bp COI sequence (accession no. MT822775) resulted in a 99% identity with that of the P. spinosum strain CBS122663 (accession no. HQ708832.1), and the 916-bp ITS sequence (accession no. MN847595) showed 100% identity with Genbank accession number AB217665 belonging to P. spinosum. Koch's postulates were confirmed. Corn kernels that had been soaked in water for 24 hours in water, autoclaved for 2 hours at 121˚C and allowed to cool were inoculated with agar plugs of P. spinosum grown on corn meal agar medium (CMA) for 10 days. The inoculated corn kernels were incubated at 28 ℃ for 13~15 days, until the corn kernels were covered with white hypha of P. spinosum. Ten healthy approximately 2-years old American ginseng plants growing in Wengdeng greenhouses were transplanted into a sterilized potting soil that was artificially infested with the corn inoculum (3 g inoculum per 100 g loam mixture). Inoculated and non-inoculated control plants were maintained in a greenhouse with a roof covered with sunshade net at 28 °C and 100% relative humidity. The experiment was repeated once. Four days after inoculation (DAI), the crown of inoculated plants developed water-soaked symptoms similar to those observed in field. No symptoms developed on the control plants. By 7 DAI, the inoculated fine roots and crowns showed water-soaked lesions identical to those observed in field, whereas control plants remained symptomless. The re-isolated isolate of P. spinosum was identical morphologically and by DNA sequence analysis to the original isolate. To our knowledge, this is the first report of root rot on American ginseng caused by P. spinosum in China and worldwide. Identification of the pathogen will assist in devising strategies to protect this important medicine plant from the pathogen, and to prevent yield losses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...