Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 173: 116353, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432128

RESUMO

Peiminine, the primary biologically active compound from Fritillaria thunbergii Miq., has demonstrated significant pharmacological activities. Doxorubicin is one of the most potent chemotherapeutic agents for breast cancer (BC). This study was designed to investigate the efficacy and underlying mechanisms of Peiminine combined with Doxorubicin in treating BC. Our results demonstrated that the combination of Peiminine and 1 mg/kg Doxorubicin exhibited more significant suppression of tumor growth compared with the monotherapy in MDA-MB-231 xenograft nude mice model, which is comparable to the effect of 3 mg/kg Doxorubicin in vivo. Notably, the 3 mg/kg Doxorubicin monotherapy resulted in organ toxicity, specifically in the liver and heart, whereas no toxicity was observed in the combination group. In vitro, this combined treatment exhibited a synergistic reduction on the viability of BC cells. Peiminine enhanced the cell cycle arrest and DNA damage induced by Doxorubicin. Furthermore, the combination treatment effectively blocked DNA repair by inhibiting the MAPKs signaling pathways. And ZEB1 knockdown attenuated the combined effect of Peiminine and Doxorubicin on cell viability and DNA damage. In conclusion, our study found that the combination of Peiminine and Doxorubicin showed synergistic inhibitory effects on BC both in vivo and in vitro through enhancing Doxorubicin-induced DNA damage. These findings support that their combination is a novel and promising therapeutic strategy for treating BC.


Assuntos
Neoplasias da Mama , Cevanas , Camundongos , Animais , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Camundongos Nus , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Adutos de DNA/farmacologia , Adutos de DNA/uso terapêutico , Linhagem Celular Tumoral , Apoptose , Homeobox 1 de Ligação a E-box em Dedo de Zinco
2.
Cell Death Dis ; 14(10): 693, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865637

RESUMO

The interaction between tumor cells and stromal cells within the tumor microenvironment plays a critical role in cancer progression. Mesenchymal stem cells (MSCs) are important tumor stromal cells that exhibit pro-oncogenic activities when reprogrammed by the tumor. However, the precise mechanisms underlying MSC reprogramming in gastric cancer remain not well understood. QRT-PCR, western blot, and immunohistochemistry were used to examine gene and protein expression levels. In vitro and in vivo experiments were conducted to assess the biological functions of gastric cancer cells. RNA-sequencing, RNA immunoprecipitation (RIP), and meRIP assays were performed to investigate underlying molecular mechanisms. We found a significant increase in the expression and N6-methyladenosine (m6A) modification levels of colony-stimulating factor 2 (CSF2) in gastric cancer MSCs. CSF2 gene overexpression induced the reprogramming of normal MSCs into cancer-promoting MSCs, thereby enhancing the proliferation, migration, and drug resistance of gastric cancer cells through the secretion of various pro-inflammatory factors. Additionally, we demonstrated that the m6A reader IGF2BP2 bound to and stabilized CSF2 mRNA in gastric cancer MSCs. Notably, overexpression of IGF2BP2 mimicked the effect of CSF2 on MSCs, promoting gastric cancer progression. Finally, we unveiled that CSF2 induced the ubiquitination of Notch1 to reprogram MSCs. Our study highlights a critical role of IGF2BP2-mediated m6A modification of CSF2 in reprogramming MSCs, which presents a promising therapeutic target for gastric cancer.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Microambiente Tumoral , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...