Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.526
Filtrar
1.
Nanoscale ; 16(29): 13718-13754, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38954406

RESUMO

Recently, nanotechnology has shown great potential in the field of cancer therapy due to its ability to improve the stability and solubility and reduce side effects of drugs. The biomimetic mineralization strategy based on natural proteins and metal ions provides an innovative approach for the synthesis of nanoparticles. This strategy utilizes the unique properties of natural proteins and the mineralization ability of metal ions to combine nanoparticles through biomimetic mineralization processes, achieving the effective treatment of tumors. The precise control of the mineralization process between proteins and metal ions makes it possible to obtain nanoparticles with the ideal size, shape, and surface characteristics, thereby enhancing their stability and targeting ability in vivo. Herein, initially, we analyze the role of protein molecules in biomineralization and comprehensively review the functions, properties, and applications of various common proteins and metal particles. Subsequently, we systematically review and summarize the application directions of nanoparticles synthesized based on protein biomineralization in tumor treatment. Specifically, we discuss their use as efficient drug delivery carriers and role in mediating monotherapy and synergistic therapy using multiple modes. Also, we specifically review the application of nanomedicine constructed through biomimetic mineralization strategies using natural proteins and metal ions in improving the efficiency of tumor immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Humanos , Nanopartículas/química , Nanopartículas/uso terapêutico , Animais , Proteínas/química , Proteínas/metabolismo , Materiais Biomiméticos/química , Portadores de Fármacos/química , Nanomedicina , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomineralização
2.
Zhonghua Nan Ke Xue ; 30(1): 51-59, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-39046414

RESUMO

OBJECTIVE: To analyze the main active components and potential molecular mechanism of Yishen Tongluo Prescription (YTP) in the treatment of male infertility based on network pharmacological technology. METHODS: We searched and sorted the main active components of YTP and their individual potential targets in the databases of Systematic Pharmacology of Traditional Chinese Medicine (TCM) and Bioinformatics Analysis Tool of the Molecular Mechanism of TCM, and screened the targets related to male infertility diseases in the databases of Genecards, DisGeNET and OMIM. We made a Venn diagram by intersecting the predicted targets of YTP and those of male infertility diseases, constructed visualized networks for the association of the intersection targets and protein-protein interaction (PPI) using the Cytoscape software and STRING platform respectively, and conducted gene ontology (GO) and KEGG enrichment analyses using the DAVID database and R language "Cluster Profiler" software package respectively. RESULTS: A total of 99 active components, 250 targets of YTP, 4 397 targets of male infertility and 127 common targets were identified. GO analysis revealed that the biological processes of the common targets mainly included transcriptional regulation of RNA polymerase promoter Ⅱ, regulation of gene expressions, regulation of apoptosis, responses to estrogen, and cell responses to hypoxia. KEGG analysis showed significant enrichment of the common targets in the estrogen signaling pathway, cell apoptosis pathway, AGE-RAGE signaling pathway in diabetic complications, and TNF signaling pathway. CONCLUSION: Through network pharmacology, we identified the main active components of YTP and its multi-target and multi-pathway mechanism in the treatment of male infertility, which has paved the ground for animal and cell experiments in verifying the action mechanism of YTP on male infertility.


Assuntos
Medicamentos de Ervas Chinesas , Infertilidade Masculina , Farmacologia em Rede , Masculino , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Infertilidade Masculina/tratamento farmacológico , Humanos , Mapas de Interação de Proteínas , Medicina Tradicional Chinesa/métodos , Biologia Computacional , Ontologia Genética , Apoptose/efeitos dos fármacos
3.
Cardiovasc Diabetol ; 23(1): 267, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039597

RESUMO

BACKGROUND: Sodium-Glucose Cotransporter-2 Inhibitor (SGLT2i) is a novel oral drug for treating type 2 diabetes mellitus (T2DM) with demonstrated cardiovascular benefits. Previous studies in apolipoprotein E knockout mice have shown that SGLT2i is associated with attenuated progression of atherosclerosis. However, whether this effect extends to T2DM patients with coronary atherosclerosis in real-world settings remains unknown. METHODS: In this longitudinal cohort study using coronary computed tomography angiography (CCTA), T2DM patients who underwent ≥ 2 CCTA examinations at our center between 2019 and 2022 were screened. Eligible patients had multiple study plaques, defined as non-obstructive stenosis at baseline and not intervened during serial CCTAs. Exclusion criteria included a CCTA time interval < 12 months, prior SGLT2i treatment, or initiation/discontinuation of SGLT2i during serial CCTAs. Plaque volume (PV) and percent atheroma volume (PAV) were measured for each study plaque using CCTA plaque analysis software. Patients and plaques were categorized based on SGLT2i therapy and compared using a 1:1 propensity score matching (PSM) analysis. RESULTS: The study included 236 patients (mean age 60.5 ± 9.5 years; 69.1% male) with 435 study plaques (diameter stenosis ≥ 50%, 31.7%). Following SGLT2i treatment for a median duration of 14.6 (interquartile range: 13.0, 20.0) months, overall, non-calcified, and low-attenuation PV and PAV were significantly decreased, while calcified PV and PAV were increased (all p < 0.001). Meanwhile, reductions in overall PV, non-calcified PV, overall PAV, and non-calcified PAV were significantly greater in SGLT2i-treated compared to non-SGLT2i-treated plaques (all p < 0.001). PSM analysis showed that SGLT2i treatment was associated with higher reductions in overall PV (- 11.77 mm3 vs. 4.33 mm3, p = 0.005), non-calcified PV (- 16.96 mm3 vs. - 1.81 mm3, p = 0.017), overall PAV (- 2.83% vs. 3.36%, p < 0.001), and non-calcified PAV (- 4.60% vs. 0.70%, p = 0.003). These findings remained consistent when assessing annual changes in overall and compositional PV and PAV. Multivariate regression models demonstrated that SGLT2i therapy was associated with attenuated progression of overall or non-calcified PV or PAV, even after adjusting for cardiovascular risk factors, medications, and baseline overall or non-calcified PV or PAV, respectively (all p < 0.05). The effect of SGLT2i on attenuating non-calcified plaque progression was consistent across subgroups (all p for interaction > 0.05). CONCLUSIONS: In this longitudinal CCTA cohort of T2DM patients, SGLT2i therapy markedly regressed coronary overall PV and PAV, mainly result from a significant reduction in non-calcified plaque.


Assuntos
Angiografia por Tomografia Computadorizada , Angiografia Coronária , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Placa Aterosclerótica , Valor Preditivo dos Testes , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Masculino , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Feminino , Pessoa de Meia-Idade , Estudos Longitudinais , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/diagnóstico , Idoso , Resultado do Tratamento , Fatores de Tempo , Estudos Retrospectivos , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/efeitos dos fármacos
4.
Neurochem Res ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060766

RESUMO

The non-coding RNA LINC00894 modulates tumor proliferation and drug resistance. However, its role in brain is still unclear. Using RNA-pull down combined with mass spectrometry and RNA binding protein immunoprecipitation, EIF5 was identified to interact with LINC00894. Furthermore, LINC00894 knockdown decreased EIF5 protein expression, whereas LINC00894 overexpression increased EIF5 protein expression in SH-SY5Y and BE(2)-M17 (M17) neuroblastoma cells. Additionally, LINC00894 affected the ubiquitination modification of EIF5. Adeno-associated virus (AAV) mediated LINC00894 overexpression in the brain inhibited the expression of activated Caspase-3, while increased EIF5 protein level in rats and mice subjected to transient middle cerebral artery occlusion reperfusion (MCAO/R). Meanwhile, LINC00894 knockdown increased the number of apoptotic cells and expression of activated Caspase-3, and its overexpression decreased them in the oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro models. Further, LINC00894 was revealed to regulated ATF4 protein expression in condition of OGD/R and normoxia. LINC00894 knockdown also decreased the expression of glutamate-cysteine ligase catalytic subunit (GCLC) and ATF4, downregulated glutathione (GSH), and the ratio of GSH to oxidized GSH (GSH: GSSG) in vitro. By using RNA-seq combined with qRT-PCR and immunoblot, we identified that fibroblast growth factor 21 (FGF21) and aconitate decarboxylase 1 (ACOD1), as the ATF4 target genes were regulated by LINC00894 in the MCAO/R model. Finally, we revealed that ATF4 transcriptionally regulated FGF21 and ACOD1 expression; ectopic overexpression of FGF21 or ACOD1 in LINC00894 knockdown cells decreased activated Caspase-3 expression in the OGD/R model. Our results demonstrated that LINC00894 regulated cerebral ischemia injury by stabilizing EIF5 and facilitating EIF5-ATF4-dependent induction of FGF21 and ACOD1.

6.
J Exp Clin Cancer Res ; 43(1): 195, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020380

RESUMO

BACKGROUND: Metastasis is the major cause of colorectal cancer (CRC) mortality. Emerging evidence suggests that long noncoding RNAs (lncRNAs) drive cancer metastasis and that their regulatory pathways could be targeted for preventing metastasis. However, the underlying mechanisms of lncRNAs in CRC metastasis remain poorly understood. METHODS: Microarray analysis was used to screen for differentially expressed lncRNAs. Transwell assays, fibronectin cell adhesion assays, and mouse metastasis models were utilized to evaluate the metastatic capacities of CRC in vitro and in vivo. Chromatin isolation by RNA purification, chromatin immunoprecipitation and chromosome conformation capture were applied to investigate the underlying mechanism involved. qRT‒PCR and transmission electron microscopy were performed to confirm macrophage polarization and the presence of cancer-derived exosomes. RESULTS: The lncRNA RP11-417E7.1 was screened and identified as a novel metastasis-associated lncRNA that was correlated with a poor prognosis. RP11-417E7.1 enhances the metastatic capacity of CRC cells in vivo and in vitro. Mechanistically, RP11-417E7.1 binding with High mobility group A1 (HMGA1) promotes neighboring thrombospondin 2 (THBS2) transcription via chromatin loop formation between its promoter and enhancer, which activates the Wnt/ß-catenin signaling pathway and facilitates CRC metastasis. Furthermore, exosomes derived from CRC cells transport THBS2 into macrophages, thereby inducing the M2 polarization of macrophages to sustain the prometastatic microenvironment. Notably, netropsin, a DNA-binding drug, suppresses chromatin loop formation mediated by RP11-417E7.1 at the THBS2 locus and significantly inhibits CRC metastasis in vitro and in vivo. CONCLUSIONS: This study revealed the novel prometastatic function and mechanism of the lncRNA RP11-417E7.1, which provides a potential prognostic indicator and therapeutic target in CRC.


Assuntos
Neoplasias Colorretais , Exossomos , Macrófagos , RNA Longo não Codificante , Via de Sinalização Wnt , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Humanos , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Exossomos/metabolismo , Macrófagos/metabolismo , Metástase Neoplásica , Masculino , Feminino , Linhagem Celular Tumoral , Prognóstico , beta Catenina/metabolismo , Regulação Neoplásica da Expressão Gênica
7.
Drug Dev Res ; 85(5): e22235, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39021343

RESUMO

RIPK1 plays a key role in necroptosis and is associated with various inflammatory diseases. Using structure-based virtual screening, a novel hit with 5-(1-benzyl-1H-imidazol-4-yl)-1,2,4-oxadiazole scaffold was identified as an RIPK1 inhibitor with an IC50 value of 1.3 µM. Further structure-activity relationship study was performed based on similarity research and biological evaluation. The molecular dynamics simulation of compound 2 with RIPK1 indicated that it may act as a type II kinase inhibitor. This study provides a highly efficient way to discover novel scaffold RIPK1 inhibitors for further development.


Assuntos
Simulação de Dinâmica Molecular , Oxidiazóis , Inibidores de Proteínas Quinases , Proteína Serina-Treonina Quinases de Interação com Receptores , Humanos , Relação Estrutura-Atividade , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Oxidiazóis/farmacologia , Oxidiazóis/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Simulação de Acoplamento Molecular , Imidazóis/farmacologia , Imidazóis/química , Avaliação Pré-Clínica de Medicamentos , Descoberta de Drogas/métodos
8.
Eur Radiol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030372

RESUMO

OBJECTIVES: To investigate the efficacy of statins on symptomatic intracranial atherosclerotic plaques using high-resolution 3.0 T MR vessel wall imaging (HR-MRI). METHODS: Patients with symptomatic intracranial atherosclerotic plaques (cerebral ischemic events within the last three months) confirmed by HR-MRI from July 2017 to August 2022 were retrospectively included in this study. The enrolled patients started statin therapy at baseline. All the patients underwent the follow-up HR-MRI examination after statin therapy for at least 3 months. A paired sample t-test and Wilcoxon rank sum test were used to evaluate the changes in plaque characteristics after statin therapy. Multivariate linear regression was further used to investigate the clinical factors associated with statin efficacy. RESULTS: A total of 48 patients (37 males; overall mean age = 60.2 ± 11.7 years) were included in this study. The follow-up time was 7.0 (5.6-12.0) months. In patients treated with statins for > 6 months (n = 31), plaque length, wall thickness, plaque burden, luminal stenosis and plaque enhancement were significantly reduced. Similar results were found in patients with good lipid control (n = 21). Younger age, lower BMI and hypertension were associated with decreased plaque burden. Lower BMI, hypertension and longer duration of statin therapy were associated with decreased plaque enhancement. Younger age and hypertension were associated with decreased luminal stenosis (all p < 0.05). CONCLUSION: HR-MRI can effectively evaluate plaques changes after statin therapy. Statins can reduce plaque burden and stabilize plaques. The effect of statin may have a relationship with age, BMI, hypertension, and duration of statin therapy. CLINICAL RELEVANCE STATEMENT: High-resolution MRI can be applied to evaluate the efficacy of statins on symptomatic intracranial atherosclerotic plaques. Long-term statin use and well-controlled blood lipid levels can help reduce plaque burden and stabilize plaques. KEY POINTS: High-resolution MRI provides great help evaluating the changes of plaque characteristics after statin therapy. Efficacy of statins is associated with duration of use, controlled lipid levels, and clinical factors. High-resolution MRI can serve as an effective method for following-up symptomatic intracranial atherosclerosis.

9.
Angew Chem Int Ed Engl ; : e202409409, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008227

RESUMO

Lithium iron phosphate (LFP)/graphite batteries have long dominated the energy storage battery market and are anticipated to become the dominant technology in the global power battery market. However, the poor fast-charging capability and low-temperature performance of LFP/graphite batteries seriously hinder their further spread. These limitations are strongly associated with the interfacial Li-ion transport. Here we report a wide-temperature-range ester-based electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film-forming ability by regulating the anion chemistry of Li salt. The interfacial barrier of the battery is quantitatively unraveled by employing three-electrode system and distribution of relaxation time technique. The superior role of the proposed electrolyte in preventing Li0 plating and sustaining homogeneous and stable interphases are also systematically investigated. The LFP/graphite cells exhibit rechargeability in an ultrawide temperature range of -80°C to 80°C and outstanding fast-charging capability without compromising lifespan. Specially, the practical LFP/graphite pouch cells achieve 80.2% capacity retention after 1200 cycles (2 C) and 10-min charge to 89% (5 C) at 25°C and provides reliable power even at -80°C.

10.
Water Res ; 262: 122047, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39003956

RESUMO

Dissolved organic matter (DOM) plays a pivotal role in drinking water treatment, influencing the performance of unit processes and final water quality (e.g. disinfection byproduct risk). Biofiltration is an effective method of reducing DOM, but currently lacks a comprehensive appreciation of the association between microbial profiles and biofiltration performance. In this study, bench-scale biofiltration units inoculated with microbial consortia from river and soil matrices were operated successively for comparing their efficacy in terms of DOM removal. The results showed that biofiltration units receiving soil microbes were significantly superior (p < 0.05) to those receiving river inoculated microbes in terms of decomposing DOM recalcitrant fractions and reducing DBP formation potential, resulting in DOC and DBP precursor removals of up to 58.4 % and 87.9 %, respectively. Characterization of the taxonomic composition revealed that differences in the microbial assembly of the two biofilter groups were subject to deterministic rather than stochastic factors. Furthermore, more complicated interspecific relationships and niche structures in soil inoculated biofilters were deciphered by co-occurrence network, providing a plausible profile on a taxonomic division of labor in DOM stepwise degradation. Accordingly, the contribution of microbial compositions was found to be of greater importance than the GAC mass and biomass attached to the media. Thus, this study has advanced the understanding of microbial-mediated DOM decomposition in biofiltration, and also provided a promising strategy for enhancing the process for water use via developing appropriate engineered consortia of bacteria.

11.
Langmuir ; 40(28): 14413-14425, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38946296

RESUMO

Atmospheric water harvesting (AWH) technology is a new strategy for alleviating freshwater scarcity. Adsorbent materials with high hygroscopicity and high photothermal conversion efficiency are the key to AWH technology. Hence, in this study, a simple and large-scale preparation for a hygroscopic compound of polyurethane (PU) sponge-grafted calcium alginate (CA) with carbon ink (SCAC) was developed. The PU sponge in the SCAC aerogel acts as a substrate, CA as a moisture adsorber, and carbon ink as a light adsorber. The SCAC aerogel exhibits excellent water absorption of 0.555-1.40 g·g-1 within a wide range of relative humidity (40-80%) at 25 °C. The SCAC aerogel could release adsorbed water driven by solar energy, and more than 92.17% of the adsorbed water could be rapidly released over a wide solar intensity range of 1.0-2.0 sun. In an outdoor experiment, 57.517 g of SCAC was able to collect 32.8 g of clean water in 6 h, and the water quality meets the drinking water standards set by the World Health Organization. This study suggests a new approach to design promising AWH materials and infers the potential practical application of SCAC aerogel-based adsorbents.

12.
Free Radic Res ; 58(5): 311-322, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38946540

RESUMO

It is well known that the adaptations of muscular antioxidant system to aerobic exercise depend on the frequency, intensity, duration, type of the exercise. Nonetheless, the timing of aerobic exercise, related to circadian rhythms or biological clock, may also affect the antioxidant defense system, but its impact remains uncertain. Bain and muscle ARNT-like 1 (BMAL1) is the core orchestrator of molecular clock, which can maintain cellular redox homeostasis by directly controlling the transcriptional activity of nuclear factor erythroid 2-related factor 2 (NRF2). So, our research objective was to evaluate the impacts of aerobic exercise training at various time points of the day on BMAL1 and NRF2-mediated antioxidant system in skeletal muscle. C57BL/6J mice were assigned to the control group, the group exercising at Zeitgeber Time 12 (ZT12), and the group exercising at ZT24. Control mice were not intervened, while ZT12 and ZT24 mice were trained for four weeks at the early and late time point of their active phase, respectively. We observed that the skeletal muscle of ZT12 mice exhibited higher total antioxidant capacity and lower reactive oxygen species compared to ZT24 mice. Furthermore, ZT12 mice improved the colocalization of BMAL1 with nucleus, the protein expression of BMAL1, NRF2, NAD(P)H quinone oxidoreductase 1, heme oxygenase 1, glutamate-cysteine ligase modifier subunit and glutathione reductase in comparison to those of ZT24 mice. In conclusion, the 4-week aerobic training performed at ZT12 is more effective for enhancing NRF2-mediated antioxidant responses of skeletal muscle, which may be attributed to the specific activation of BMAL1.


Assuntos
Fatores de Transcrição ARNTL , Antioxidantes , Camundongos Endogâmicos C57BL , Músculo Esquelético , Condicionamento Físico Animal , Animais , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Músculo Esquelético/metabolismo , Camundongos , Antioxidantes/metabolismo , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Espécies Reativas de Oxigênio/metabolismo
13.
J Cell Mol Med ; 28(13): e18386, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38990057

RESUMO

Acute lung injury (ALI) is a major pathophysiological problem characterized by severe inflammation, resulting in high morbidity and mortality. Plumbagin (PL), a major bioactive constituent extracted from the traditional Chinese herb Plumbago zeylanica, has been shown to possess anti-inflammatory and antioxidant pharmacological activities. However, its protective effect on ALI has not been extensively studied. The objective of this study was to investigate the protective effect of PL against ALI induced by LPS and to elucidate its possible mechanisms both in vivo and in vitro. PL treatment significantly inhibited pathological injury, MPO activity, and the wet/dry ratio in lung tissues, and decreased the levels of inflammatory cells and inflammatory cytokines TNF-α, IL-1ß, IL-6 in BALF induced by LPS. In addition, PL inhibited the activation of the PI3K/AKT/mTOR signalling pathway, increased the activity of antioxidant enzymes CAT, SOD, GSH and activated the Keap1/Nrf2/HO-1 signalling pathway during ALI induced by LPS. To further assess the association between the inhibitory effects of PL on ALI and the PI3K/AKT/mTOR and Keap1/Nrf2/HO-1 signalling, we pretreated RAW264.7 cells with 740Y-P and ML385. The results showed that the activation of PI3K/AKT/mTOR signalling reversed the protective effect of PL on inflammatory response induced by LPS. Moreover, the inhibitory effects of PL on the production of inflammatory cytokines induced by LPS also inhibited by downregulating Keap1/Nrf2/HO-1 signalling. In conclusion, the results indicate that the PL ameliorate LPS-induced ALI by regulating the PI3K/AKT/mTOR and Keap1-Nrf2/HO-1 signalling, which may provide a novel therapeutic perspective for PL in inhibiting ALI.


Assuntos
Lesão Pulmonar Aguda , Proteína 1 Associada a ECH Semelhante a Kelch , Lipopolissacarídeos , Fator 2 Relacionado a NF-E2 , Naftoquinonas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/toxicidade , Naftoquinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos , Masculino , Citocinas/metabolismo , Heme Oxigenase-1/metabolismo , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Heme Oxigenase (Desciclizante)/metabolismo , Proteínas de Membrana/metabolismo
14.
Mol Phylogenet Evol ; 199: 108140, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38981554

RESUMO

Cryptic diversity abounds in many biological species, posing challenges to our understanding of biological diversity, conservation and management. Taking the common coralline algae, the subfamily Lithophylloideae as an illustration, this study delved into the implications of cryptic diversity through global-level phylogenetic and geographical analysis based upon Lithophylloideae molecular data worldwide, as well as a multi-locus time-calibrated phylogeny to elucidate their possible evolutionary process. The multiscale analysis revealed the polyphyly in current concept of the genus Lithophyllum. Geographic isolation resulting from the Tethys terminal event (TTE) has led to two distinct distribution regions for this so-called cosmopolitan genus: one regionally distributed along European coasts/Mediterranean that should include the taxonomical Lithophyllum; others widely distributed, particularly among pan-tropic waters, suggesting at least five groups to be rediscovered within the subfamily Lithophylloideae. Meanwhile, the cryptic genus Titanoderma, lacking morphological identification features with Lithophyllum, exhibited differences in distribution and evolutionary patterns consistent with their ecological habits, thus supporting their separation. This study provided useful hints for cryptic diversity, which advocated an integrative thinking to investigating global cryptic diversity and exploring the broad linkages between phylogenetic relationships and evolutionary origin, biogeography, morphological and ecological traits to achieve a more comprehensive understanding of biodiversity.

15.
Cancer Commun (Lond) ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030964

RESUMO

BACKGROUND: N4-acetylcytidine (ac4C) represents a novel messenger RNA (mRNA) modification, and its associated acetyltransferase N-acetyltransferase 10 (NAT10) plays a crucial role in the initiation and progression of tumors by regulating mRNA functionality. However, its role in hepatocellular carcinoma (HCC) development and prognosis is largely unknown. This study aimed to elucidate the role of NAT10-mediated ac4C in HCC progression and provide a promising therapeutic approach. METHODS: The ac4C levels were evaluated by dot blot and ultra-performance liquid chromatography-tandem mass spectrometry with harvested HCC tissues. The expression of NAT10 was investigated using quantitative real-time polymerase chain reaction, western blotting, and immunohistochemical staining across 91 cohorts of HCC patients. To explore the underlying mechanisms of NAT10-ac4C in HCC, we employed a comprehensive approach integrating acetylated RNA immunoprecipitation and sequencing, RNA sequencing and ribosome profiling analyses, along with RNA immunoprecipitation, RNA pull-down, mass spectrometry, and site-specific mutation analyses. The drug affinity responsive targets stability, cellular thermal shift assay, and surface plasmon resonance assays were performed to assess the specific binding of NAT10 and Panobinostat. Furthermore, the efficacy of targeting NAT10-ac4C for HCC treatment was elucidated through in vitro experiments using HCC cells and in vivo HCC mouse models. RESULTS: Our investigation revealed a significant increase in both the ac4C RNA level and NAT10 expression in HCC. Notably, elevated NAT10 expression was associated with poor outcomes in HCC patients. Functionally, silencing NAT10 suppressed HCC proliferation and metastasis in vitro and in vivo. Mechanistically, NAT10 stimulates the ac4C modification within the coding sequence (CDS) of high mobility group protein B2 (HMGB2), which subsequently enhances HMGB2 translation by facilitating eukaryotic elongation factor 2 (eEF2) binding to the ac4C sites on HMGB2 mRNA's CDS. Additionally, high-throughput compound library screening revealed Panobinostat as a potent inhibitor of NAT10-mediated ac4C modification. This inhibition significantly attenuated HCC growth and metastasis in both in vitro experiments using HCC cells and in vivo HCC mouse models. CONCLUSIONS: Our study identified a novel oncogenic epi-transcriptome axis involving NAT10-ac4C/eEF2-HMGB2, which plays a pivotal role in regulating HCC growth and metastasis. The drug Panobinostat validates the therapeutic potential of targeting this axis for HCC treatment.

16.
Front Genet ; 15: 1405478, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045327

RESUMO

The use of wide-ranging dairy herd improvement (DHI) measurements has resulted in the investigation of somatic cell count (SCC) and the identification of many genes associated with mastitis resistance. In this study, blood samples of Xinjiang brown cattle with different SCCs were collected, and genome-wide DNA methylation was analyzed by MeDIP-seq. The results showed that peaks were mostly in intergenic regions, followed by introns, exons, and promoters. A total of 1,934 differentially expressed genes (DEGs) associated with mastitis resistance in Xinjiang brown cattle were identified. The enrichment of differentially methylated CpG islands of the TRAPPC9 and CD4 genes was analyzed by bisulfate genome sequencing. The methylation rate of differentially methylated CpGs was higher in the TRAPPC9 gene of cattle with clinical mastitis (mastitis group) compared with healthy cattle (control group), while methylation of differentially methylated CpGs was significantly lower in CD4 of the mastitis group compared with the control group. RT-qRCR analysis showed that the mastitis group had significantly reduced expression of CD4 and TRAPPC9 genes compared to the control group (p < 0.05). Furthermore, Mac-T cells treated with lipopolysaccharide and lipoteichoic acid showed significant downregulation of the TRAPPC9 gene in the mastitis group compared with the control group. The identified epigenetic biomarkers provide theoretical reference for treating cow mastitis, breeding management, and the genetic improvement of mastitis resistance in Xinjiang brown cattle.

17.
Front Pediatr ; 12: 1339925, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989272

RESUMO

Biliary atresia (BA) is a severe and progressive biliary obstructive disease in infants that requires early diagnosis and new therapeutic targets. This study employed bioinformatics methods to identify diagnostic biomarkers and potential therapeutic targets for BA. Our analysis of mRNA expression from Gene Expression Omnibus datasets revealed 3,273 differentially expressed genes between patients with BA and those without BA (nBA). Weighted gene coexpression network analysis determined that the turquoise gene coexpression module, consisting of 298 genes, is predominantly associated with BA. The machine learning method then filtered out the top 2 important genes, CXCL8 and TMSB10, from the turquoise module. The area under receiver operating characteristic curves for TMSB10 and CXCL8 were 0.961 and 0.927 in the training group and 0.819 and 0.791 in the testing group, which indicated a high diagnostic value. Besides, combining TMSB10 and CXCL8, a nomogram with better diagnostic performance was built for clinical translation. Several studies have highlighted the potential of CXCL8 as a therapeutic target for BA, while TMSB10 has been shown to regulate cell polarity, which was related to BA progression. Our analysis with qRT PCR and immunohistochemistry also confirmed the upregulation of TMSB10 at mRNA and protein levels in BA liver samples. These findings highlight the sensitivity of CXCL8 and TMSB10 as diagnostic biomarkers and their potential as therapeutic targets for BA.

18.
Phys Med Biol ; 69(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979700

RESUMO

Objective.In helical tomotherapy, image-guided radiotherapy employs megavoltage computed tomography (MVCT) for precise targeting. However, the high voltage of megavoltage radiation introduces substantial noise, significantly compromising MVCT image clarity. This study aims to enhance MVCT image quality using a deep learning-based denoising method.Approach.We propose an unpaired MVCT denoising network using a coupled generative adversarial network framework (DeCoGAN). Our approach assumes that a universal latent code within a shared latent space can reconstruct any given pair of images. By employing an encoder, we enforce this shared-latent space constraint, facilitating the conversion of low-quality (noisy) MVCT images into high-quality (denoised) counterparts. The network learns the joint distribution of images from both domains by leveraging samples from their respective marginal distributions, enhanced by adversarial training for effective denoising.Main Results.Compared to an analytical algorithm (BM3D) and three deep learning-based methods (RED-CNN, WGAN-VGG and CycleGAN), the proposed method excels in preserving image details and enhancing human visual perception by removing most noise and retaining structural features. Quantitative analysis demonstrates that our method achieves the highest peak signal-to-noise ratio and Structural Similarity Index Measurement values, indicating superior denoising performance.Significance.The proposed DeCoGAN method shows remarkable MVCT denoising performance, making it a promising tool in the field of radiation therapy.


Assuntos
Processamento de Imagem Assistida por Computador , Razão Sinal-Ruído , Processamento de Imagem Assistida por Computador/métodos , Humanos , Tomografia Computadorizada por Raios X , Aprendizado Profundo , Radioterapia Guiada por Imagem/métodos , Redes Neurais de Computação
19.
Angew Chem Int Ed Engl ; : e202406054, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980317

RESUMO

Electrochemical impedance spectroscopy (EIS), characterized by its non-destructive and in-situ nature, plays a crucial role in comprehending the thermodynamic and kinetic processes occurring with Li-ion batteries. However, there is a lack of consistent and coherent physical interpretations for the EIS of porous electrodes. Therefore, it is imperative to conduct thorough investigations into the underlying physical mechanisms of EIS. Herein, by employing reference electrode in batteries, we revisit the associated physical interpretation of EIS at different frequency. Combining different battery configurations, temperature-dependent experiments, and elaborated distribution of relaxation time analysis, we find that the ion transport in porous electrode channels and pseudo-capacitance behavior dominate the high-frequency and mid-frequency impedance arcs, respectively. This work offers a perspective for the physical interpretation of EIS and also sheds light on the understanding of EIS characteristics in other advanced energy storage systems.

20.
J Ethnopharmacol ; 334: 118517, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972525

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The limitations of modern medicine in mitigating the pathological process of diabetic kidney disease (DKD) necessitate novel, precise, and effective prevention and treatment methods. Huangqi, the root of Astragalus membranaceus Fisch. ex Bunge has been used in traditional Chinese medicine for various kidney ailments. Astragaloside IV (AS-IV), the primary pharmacologically active compound in A. membranaceus, is involved in lipid metabolism regulation; however, its potential in ameliorating renal damage in DKD remains unexplored. AIM OF THE STUDY: To elucidate the specific mechanism by which AS-IV moderates DKD progression. MATERIALS AND METHODS: A murine model of DKD and high glucose-induced HK-2 cells were treated with AS-IV. Furthermore, multiomics analysis, molecular docking, and molecular dynamics simulations were performed to elucidate the mechanism of action of AS-IV in DKD, which was validated using molecular biological methods. RESULTS: AS-IV regulated glucose and lipid metabolism in DKD, thereby mitigating lipid deposition in the kidneys. Proteomic analysis identified 12 proteins associated with lipid metabolism regulated by AS-IV in the DKD renal tissue. Additionally, lipid metabolomic analysis revealed that AS-IV upregulated and downregulated 4 beneficial and 79 harmful lipid metabolites, respectively. Multiomics analysis further indicated a positive correlation between the top-ranked differential protein heme oxygenase (HMOX)1 and the levels of various harmful lipid metabolites and a negative correlation with the levels of beneficial lipid metabolites. Furthermore, enrichment of both ferroptosis and hypoxia-inducible factor (HIF)-1 signaling pathways during the AS-IV treatment of DKD was observed using proteomic analysis. Validation results showed that AS-IV effectively reduced ferroptosis in DKD-affected renal tubular epithelial cells by inhibiting HIF-1α/HMOX1 pathway activity, upregulating glutathione peroxidase-4 and ferritin heavy chain-1 expression, and downregulating acyl-CoA synthetase long-chain family member-4 and transferrin receptor-1 expression. Our findings demonstrate the potential of AS-IV in mitigating DKD pathology by downregulating the HIF-1α/HMOX1 signaling pathway, thereby averting ferroptosis in renal tubular epithelial cells. CONCLUSIONS: AS-IV is a promising treatment strategy for DKD via the inhibition of ferroptosis in renal tubular epithelial cells. The findings of this study may help facilitate the development of novel therapeutic strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...