Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 27(24): 35088-35095, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31878684

RESUMO

Artificial control of the thermal radiation is of growing importance to fundamental science and technological applications, ranging from waste heat recovery to thermophotovoltaics. Nanophotonics has been proven to be an efficient approach to manipulate the radiation. In comparison with structures utilizing planar subwavelength scale lithography, in this paper, we propose a cascaded all-dielectric multilayer structure to selectively manipulate the thermal radiation characteristics in long-wavelength infrared (LWIR). The broadband emissivity in non-atmospheric windows (6.3-7.5 µm) can reach 0.95 and the average absorption rate is below 3% in atmospheric windows (8-14 µm). The multilayer structure is insensitive to the polarization of the incident waves and maintains a good rectangular absorptivity curve even with large oblique incidence angle at 45 degrees. The outstanding properties of the nanostructures promise various applications in infrared sensing and thermal imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...