Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38591506

RESUMO

With the miniaturization and high integration of electronic devices, high-performance thermally conductive composites have received increasing attention. The construction of hierarchical structures is an effective strategy to reduce interfacial thermal resistance and enhance composite thermal conductivity. In this study, by decorating carbon fibers (CF) with needle-like ZnO nanowires, hierarchical hybrid fillers (CF@ZnO) were rationally designed and synthesized using the hydrothermal method, which was further used to construct oriented aligned filler networks via the simple freeze-casting process. Subsequently, epoxy (EP)-based composites were prepared using the vacuum impregnation method. Compared with the pure CF, the CF@ZnO hybrid fillers led to a significant increase in thermal conductivity, which was mainly due to the fact that the ZnO nanowires could act as bridging links between CF to increase more thermally conductive pathways, which in turn reduced interfacial thermal resistance. In addition, the introduction of CF@ZnO fillers was also beneficial in improving the thermal stability of the EP-based composites, which was favorable for practical thermal management applications.

2.
Polymers (Basel) ; 15(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38006153

RESUMO

With the miniaturization of current electronic products, ceramic/polymer composites with excellent thermal conductivity have become of increasing interest. Traditionally, higher filler fractions are required to obtain a high thermal conductivity, but this leads to a decrease in the mechanical properties of the composites and increases the cost. In this study, silicon nitride nanowires (Si3N4NWs) with high aspect ratios were successfully prepared by a modified carbothermal reduction method, which was further combined with AlN particles to prepare the epoxy-based composites. The results showed that the Si3N4NWs were beneficial for constructing a continuous thermal conductive pathway as a connecting bridge. On this basis, an aligned three-dimensional skeleton was constructed by the ice template method, which further favored improving the thermal conductivity of the composites. When the mass fraction of Si3N4NWs added was 1.5 wt% and the mass fraction of AlN was 65 wt%, the composites prepared by ice templates reached a thermal conductivity of 1.64 W·m-1·K-1, which was ~ 720% of the thermal conductivity of the pure EP (0.2 W·m-1·K-1). The enhancement effect of Si3N4NWs and directional filler skeletons on the composite thermal conductivity were further demonstrated through the actual heat transfer process and finite element simulations. Furthermore, the thermal stability and mechanical properties of the composites were also improved by the introduction of Si3N4NWs, suggesting that prepared composites exhibit broad prospects in the field of thermal management.

3.
Environ Res ; 238(Pt 2): 117186, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37741569

RESUMO

Currently, the storage of coal gasification slag (CGS) is continuously increasing, as the coal gasification technology develops, posing significant environmental hazards. Due to its volcanic ash characteristics and rich residual carbon, CGS has great potential for resource utilization, which has attracted the attentions of many scholars. This paper firstly introduces the compositions and properties of CGS. Then, it reviews the existing utilization methods of CGS, including Preparation of building materials, carbon-ash separation technology, ecological restoration, and cyclic blending. The advantages and disadvantages of various methods are compared. Subsequently, some high-value utilization methods of coal gasification slag are introduced, such as the preparation of high-performance activated carbon and zeolite, of which the feasibility and advantages are evaluated. Finally, some suggestions are put forward for future developing technologies. This paper aims to provide some references and inspiration for the utilization and environmental protection of CGS.


Assuntos
Carvão Mineral , Conservação dos Recursos Naturais , Carvão Vegetal , Cinza de Carvão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...