Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 10541, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386036

RESUMO

The sliding mode control is well-known as a useful control technique that can be applied in several real-world applications. However, a straightforward and efficient process of selecting the sliding mode control gains remains a challenging but interesting topic. This paper investigates a novel gain tuning method for the sliding mode control of second-order mechanical systems. Firstly, we obtain relations between the gains and the natural and damping ratio of the closed-loop system. Secondly, the time constant of the system's actuators and the system response performance criteria, including settling time and delay time, are taken into consideration to determine appropriate ranges of the gains. These gain ranges allow control designers to select the controller gains in a time-saving manner and ensure that the desired system performance is met and the actuators work properly. Finally, the proposed method is applied to the gain tuning process of a sliding mode altitude controller for an actual quadcopter unmanned aerial vehicle. Simulation and experimental results demonstrate the applicability and effectiveness of this method.


Assuntos
Altitude , Registros , Simulação por Computador , Dispositivos Aéreos não Tripulados
2.
Sensors (Basel) ; 20(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878080

RESUMO

In this paper, an actuator fault estimation technique is proposed for quadcopters under uncertainties. In previous studies, matching conditions were required for the observer design, but they were found to be complex for solving linear matrix inequalities (LMIs). To overcome these limitations, in this study, an improved intermediate estimator algorithm was applied to the quadcopter model, which can be used to estimate actuator faults and system states. The system stability was validated using Lyapunov theory. It was shown that system errors are uniformly ultimately bounded. To increase the accuracy of the proposed fault estimation algorithm, a magnitude order balance method was applied. Experiments were verified with four scenarios to show the effectiveness of the proposed algorithm. Two first scenarios were compared to show the effectiveness of the magnitude order balance method. The remaining scenarios were described to test the reliability of the presented method in the presence of multiple actuator faults. Different from previous studies on observer-based fault estimation, this proposal not only can estimate the fault magnitude of the roll, pitch, yaw, and thrust channel, but also can estimate the loss of control effectiveness of each actuator under uncertainties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...