Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(20): 11085-11096, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37162302

RESUMO

Selective aerobic epoxidation of alkenes without any additives is of great industrial importance but still challenging because the competitive side reactions including C═C bond cleavage and isomerization are difficult to avoid. Here, we show fabricating Cu(I) single sites in pristine multivariate metal-organic frameworks (known as CuCo-MOF-74) via partial reduction of Cu(II) to Cu(I) ions during solvothermal reaction. Impressively, CuCo-MOF-74 is characteristic with single Cu(I), Cu(II), and Co(II) sites, and they exhibit the substantially enhanced selectivity of styrene oxide up to 87.6% using air as an oxidant at almost complete conversion of styrene, ∼25.8% selectivity increased over Co-MOF-74, as well as good catalytic stability. Contrast experiments and theoretical calculation indicate that Cu(I) sites contribute to the substantially enhanced selectivity of epoxides catalyzed by Co(II) sites. The adsorption of two O2 molecules on dual Co(II) and Cu(I) sites is favorable, and the projected density of state of the Co-3d orbital is closer to the Fermi level by modulating with Cu(I) sites for promoting the activation of O2 compared with dual-site Cu(II) and Co(II) and Co(II) and Co(II), thus contributing to the epoxidation of the C═C bond. When other kinds of alkenes are used as substrates, the excellent selectivity of various epoxides is also achieved over CuCo-MOF-74. We also prove the universality of fabricating Cu(I) sites in other MOF-74 with various divalent metal nodes.

2.
Nanotechnology ; 33(7)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34757948

RESUMO

Phenol is considered as an important platform molecule for synthesizing value-added chemical intermediates and products. To date, various strategies for phenol transformation have been developed, and among them, selective hydrogenation of phenol toward cyclohexanone (K), cyclohexanol (A) or the mixture KA oil has been attracted great interest because they are both the key raw materials for the synthesis of nylon 6 and 66, as well as many other chemical products, including polyamides. However, until now it is still challengeable to realize the industrilized application of phenol hydrogenation toward KA oils. To better understand the selective hydrogenation of phenol and fabricate the enabled nanocatalysts, it is necessary to summarize the recent progress on selective hydrogenation of phenol with different catalysts. In this review, we first summarize the selective hydrogenation of phenol toward cyclohexanone or cyclohexanol by different nanocatalysts, and simultaneously discuss the relationship among the active components, type of supports and their performances. Then, the possible reaction mechanism of phenol hydrogenation with the typical metal nanocatalysts is summarized. Subsequently, the possible ways for scale-up hydrogenation of phenol are discussed. Finally, the potential challenges and future developments of metal nanocatalysts for the selective hydrogenation of phenol are proposed.

3.
Angew Chem Int Ed Engl ; 59(9): 3650-3657, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-31828892

RESUMO

The semihydrogenation of alkynes into alkenes rather than alkanes is of great importance in the chemical industry. Unfortunately, state-of-the-art heterogeneous catalysts hardly achieve high turnover frequencies (TOFs) simultaneously with almost full conversion, excellent selectivity, and good stability. Here, we used metal-organic frameworks (MOFs) containing Zr metal nodes ("UiO") with tunable wettability and electron-withdrawing ability as activity accelerators for the semihydrogenation of alkynes catalyzed by sandwiched palladium nanoparticles (Pd NPs). Impressively, the porous hydrophobic UiO support not only leads to an enrichment of phenylacetylene around the Pd NPs but also renders the Pd surfaces more electron-deficient, which leads to a remarkable catalysis performance, including an exceptionally high TOF of 13835 h-1 , 100 % phenylacetylene conversion 93.1 % selectivity towards styrene, and no activity decay after successive catalytic cycles. The strategy of using molecularly tailored supports is universal for boosting the selective semihydrogenation of various terminal and internal alkynes.

4.
Nanoscale ; 10(35): 16425-16430, 2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30152836

RESUMO

Metal-organic frameworks (MOFs) have great potential to become innovative heterogeneous supports for immobilizing catalytically active noble metal nanoparticles (NPs). However, unlike metal oxide supports, the interfacial interactions between noble metal NPs and MOFs are currently neglected, thus dramatically diminishing the advantage of MOFs as supports. Herein, ZIFs(Co/Zn)@M (M = Pd, Pt or Au) nanocomposites with well-defined interfaces are synthesized and used as catalysts in gas-phase CO oxidation and liquid-phase C6H5CHO oxidation. Notably, in both reactions, ZIF-67(Co)@M samples exhibit better catalytic activity than ZIF-8(Zn)@M samples, and moreover, the catalytic activity of ZIFs@Pd is higher than that of ZIFs@Pt and ZIFs@Au samples. Experimental and theoretical results reveal that the enhanced catalytic activity originates from the interfacial electron transfer from ZIFs to noble metal NPs as well as the coupling between d band of noble metal in NPs and metal node in ZIFs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...