Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38005013

RESUMO

Magnesium slag-based porous materials (MSBPM) were successfully synthesized using alkali activation and foaming methods as an effective adsorbent for Pb2+ in solution. The effects of foaming agent type, foaming agent dosage, alkali dosage, and water glass modulus on the properties of the MSBPM were studied, and the micromorphology and porosity of the MSBPM were observed using microscopy. The influence of pH value, initial concentration, and adsorbent dosage on the Pb2+ adsorption was investigated. The results showed that a porous material (MSBPM-H2O2) with high compressive strength (8.46 MPa) and excellent Pb2+ adsorption capacity (396.11 mg·g-1) was obtained under the optimal conditions: a H2O2 dosage of 3%, an alkali dosage of 9%, a water glass modulus of 1.3, and a liquid-solid ratio of 0.5. Another porous material (MSBPM-Al) with a compressive strength of 5.27 MPa and the Pb2+ adsorption capacity of 424.89 mg·g-1 was obtained under the optimal conditions: an aluminum powder dosage of 1.5‱, an alkali dosage of 8%, a water glass modulus of 1.0, and a liquid-solid ratio of 0.5. When the pH of the aqueous solution is 6 and the initial Pb2+ concentrations are 200~500 mg·L-1, the MSBPM-H2O2 and MSBPM-Al can remove more than 99% of Pb2+ in the solution. The adsorption process of both materials followed the Langmuir isotherm model and pseudo-second-order kinetic model, indicating that the adsorption process was a single-molecule layer chemical adsorption.

2.
Mol Pharm ; 18(6): 2298-2310, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34032449

RESUMO

(S)-carvedilol (S-CAR) is the dominant pharmacodynamic conformation of carvedilol, but its further development for extended-release formulation is restricted by its poor solubility. This study aimed to prepare and screen S-CAR salts that could be used to improve solubility and allow extended release. Five salts of S-CAR with well-known acid counterions (i.e., phosphate, hydrochloride, sulfate, fumarate, and tartrate) were produced using similar processes. However, these salts were obtained with water contents of 1.60-12.28%, and their physicochemical properties differed. The melting points of phosphate, hydrochloride, and tartrate were 1.1-1.5 times higher than that of the free base. The solubility of S-CAR salts was promoted to approximately 3-32 times higher than that of the free base at pH 5.0-8.0. Typical pH-dependent solubilities were evidently observed in S-CAR salts, but considerable differences in solubility properties among these salts were observed. S-CAR phosphate and hydrochloride possessed high melting points, considerable solubility, and excellent chemical and crystallographic stabilities. Accordingly, S-CAR phosphate and hydrochloride were chosen for further pharmacokinetic experiments and pharmaceutical study. S-CAR phosphate and hydrochloride extended-release capsules were prepared using HPMC K15 as the matrix and presented extended release in in vitro and in vivo evaluations. Results implied that water molecules in the hydrated salt were a potential threat to the achievement of crystal stability and thermostability. S-CAR phosphate and hydrochloride are suitable for further development of the extended-release formulation.


Assuntos
Carvedilol/farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Carvedilol/administração & dosagem , Carvedilol/química , Química Farmacêutica , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Desenvolvimento de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Masculino , Nanopartículas , Ratos , Solubilidade , Estereoisomerismo
3.
AAPS PharmSciTech ; 22(1): 43, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33426619

RESUMO

Carvedilol is administered as a racemic mixture for the therapy of hypertension and heart failure. S-enantiomer is the dominant conformation of pharmacodynamics, but its further development was obstructed by its poor bioavailability. In this study, carvedilol and its enantiomers were compared in terms of solubility, permeability, and biliary excretion, and reasons for the poor bioavailability were discussed. Equilibrium solubility and log P were measured by a shake flask method at a wide pH range (1.2-8.0), and intestinal absorption and biliary excretion were evaluated using a single-pass rat intestinal perfusion model. According to BCS guidance, carvedilol and its R/S enantiomers are considered highly soluble at pH value less than 5.0 and low soluble at neutral or weak alkaline conditions. RS-carvedilol showed significantly lower solubilities at pH 1.2-5.0 and higher solubilities at pH 6.0-8.0 than its enantiomers. In addition, carvedilol and its enantiomers possessed similar log P values at pH 1.2-8.0. High intestinal permeabilities of carvedilol and its enantiomers were observed, and S-carvedilol showed higher absorption than R-carvedilol and RS-carvedilol. The biliary excretion about two major metabolites, 1-hydroxycarvedilol O-glucuronide and 8-hydroxycarvedilol O-glucuronide, of RS-carvedilol, S-carvedilol, and R-carvedilol were 66.4%, 73.5%, and 54.3%, respectively. In conclusion, there are significant differences amongst carvedilol and its R/S enantiomers in terms of solubility, intestine absorption, and biliary excretion abilities. The first pass effect is the primary reasons for the low bioavailability of S-carvedilol. Therefore, pharmaceutical strategies or parenteral routes should be considered to avoid the first pass metabolism.


Assuntos
Bile/metabolismo , Carvedilol/química , Absorção Intestinal , Animais , Carvedilol/farmacocinética , Masculino , Ratos , Ratos Sprague-Dawley , Solubilidade , Estereoisomerismo
4.
Int J Mol Sci ; 19(2)2018 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-29401674

RESUMO

The iridoids of Hedyotis diffusa Willd play an important role in the anti-inflammatory process, but the specific iridoid with anti-inflammatory effect and its mechanism has not be thoroughly studied. An iridoid compound named scandoside (SCA) was isolated from H. diffusa and its anti-inflammatory effect was investigated in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Its anti-inflammatory mechanism was confirmed by in intro experiments and molecular docking analyses. As results, SCA significantly decreased the productions of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and inhibited the levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α and IL-6 messenger RNA (mRNA) expression in LPS-induced RAW 264.7 macrophages. SCA treatment suppressed the phosphorylation of inhibitor of nuclear transcription factor kappa-B alpaha (IκB-α), p38, extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). The docking data suggested that SCA had great binding abilities to COX-2, iNOS and IκB. Taken together, the results indicated that the anti-inflammatory effect of SCA is due to inhibition of pro-inflammatory cytokines and mediators via suppressing the nuclear transcription factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, which provided useful information for its application and development.


Assuntos
Anti-Inflamatórios/farmacologia , Hedyotis/química , Iridoides/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/antagonistas & inibidores , Dinoprostona/biossíntese , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/química , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Iridoides/química , Iridoides/isolamento & purificação , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/química , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Extratos Vegetais/química , Células RAW 264.7 , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...