Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 9(16): 8768-8777, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35517683

RESUMO

To develop an ultra-sensitive and selective NO x gas sensor with an ultra-low detection limit, expanded graphite/NiAl layered double hydroxide (EG/NA) nanowires were synthesized by using hydrothermal method with EG as a template and adjusting the amount of urea in the reaction. X-ray diffraction and transmission electron microscopy showed EG/NA3 nanowires with a diameter of 5-10 nm and a length greater than 100 nm uniformly dispersed on the expanded graphite nanosheet (>8 layers). The synergy between NiAl layered double hydroxide (NiAl-LDH) and expanded graphite (EG) improved the gas sensing properties of the composites. As expected, gas sensing tests showed that EG/NA composites have superior performance over pristine NiAl-LDH. In particular, the EG/NA3 nanowire material exhibited an ultra-high response (R a/R g = 17.65) with ultra-fast response time (about 2 s) to 100 ppm NO x , an ultra-low detection limit (10 ppb) and good selectivity at room temperature (RT, 24 ± 2 °C), which could meet a variety of application needs. Furthermore, the enhancement of the sensing response was attributed to the nanowire structure formed by NiAl-LDH in the EG interlayer and the conductive nanonetwork of interwoven nanowires.

2.
RSC Adv ; 9(38): 21911-21921, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35518878

RESUMO

The 3D flower-like CoAl-layered double hydroxide (CoAl-LDH) was successfully prepared using the functional template agent of fluoride ions via a facile one-step hydrothermal route. Various techniques proved that all the samples presented 3D flower-like microstructural morphology. Representatively, the CA-2 sample, which was synthesized with the molar ratio of Co : Al of 3.65 : 1, had considerably abundant pores in its thin nanosheets. The average pore size was 2-4 nm, the specific surface area was equal to 49.45 m2 g-1, and the thickness of nanosheets was approximately 3.068 nm. The CA-2 sample showed an excellent response to 0.01-100 ppm NO2 with ultrafast response/recovery time at room temperature (RT). The detection limit of the sensor even reached 10 ppb. The superior gas sensing performance could be attributed to the synergistic effects of the functional template agent of fluoride ions and specific porous 3D flower-like nanostructure. The current study showed that the 3D flower-like CoAl-LDHs might a promising material in practical detection of NO2 at RT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...