Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 10: 850303, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528209

RESUMO

As hematopoietic stem cells can differentiate into all hematopoietic lineages, mitigating the damage to hematopoietic stem cells is important for recovery from overdose radiation injury. Cells in bone marrow microenvironment are essential for hematopoietic stem cells maintenance and protection, and many of the paracrine mediators have been discovered in shaping hematopoietic function. Several recent reports support exosomes as effective regulators of hematopoietic stem cells, but the role of osteoblast derived exosomes in hematopoietic stem cells protection is less understood. Here, we investigated that osteoblast derived exosomes could alleviate radiation damage to hematopoietic stem cells. We show that intravenous injection of osteoblast derived exosomes promoted WBC, lymphocyte, monocyte and hematopoietic stem cells recovery after irradiation significantly. By sequencing osteoblast derived exosomes derived miRNAs and verified in vitro, we identified miR-21 is involved in hematopoietic stem cells protection via targeting PDCD4. Collectively, our data demonstrate that osteoblast derived exosomes derived miR-21 is a resultful regulator to radio-protection of hematopoietic stem cells and provide a new strategy for reducing radiation induced hematopoietic injury.

2.
Inflammation ; 45(3): 1089-1100, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34837126

RESUMO

Ferritin, which is composed of a heavy chain and a light chain, plays a critical role in maintaining iron homeostasis by sequestering iron. The ferritin light chain (FTL) is responsible for the stability of the ferritin complex. We have previously shown that overexpression of FTL decreases the levels of the labile iron pool (LIP) and reactive oxygen species (ROS) in lipopolysaccharide (LPS)-treated murine macrophage cells. The protein level of FTL was downregulated by LPS within a short treatment period. However, the mechanism underlying the LPS-induced changes in the FTL levels is not known. In the present study, we report that LPS induces the ubiquitin-proteasome-dependent degradation of FTL and that the mechanism of LPS-induced FTL degradation involves the JNK/Itch axis. We found that LPS downregulates the protein and mRNA levels of FTL in a time-dependent manner. The proteasome inhibitor MG-132 significantly reverses the LPS-induced decrease in FTL. Furthermore, we observed that LPS treatment cannot cause ubiquitination of the lysine site (K105 and K144) mutant of FTL. Interestingly, LPS-mediated ubiquitin-dependent degradation of FTL is significantly inhibited by the JNK-specific inhibitor SP600125. Moreover, LPS could upregulate the protein level of E3 ubiquitin ligase Itch, a substrate of JNK kinases. Immunoprecipitation analyses revealed an increase in the association of FTL with Itch, a substrate of JNK kinases, in response to LPS stimulation. SP600125 decreased LPS-induced Itch upregulation. Taken together, these results suggest that LPS stimulation leads to the degradation of FTL through the ubiquitin-proteasome proteolytic pathway, and this FTL degradation is mediated by the JNK/Itch axis in murine macrophage cells.


Assuntos
Apoferritinas , Macrófagos , Complexo de Endopeptidases do Proteassoma , Animais , Apoferritinas/genética , Apoferritinas/metabolismo , Ferro , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética
3.
Theranostics ; 11(3): 1429-1445, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391543

RESUMO

Rationale: Breast cancer preferentially develops osteolytic bone metastasis, which makes patients suffer from pain, fractures and spinal cord compression. Accumulating evidences have shown that exosomes play an irreplaceable role in pre-metastatic niche formation as a communication messenger. However, the function of exosomes secreted by breast cancer cells remains incompletely understood in bone metastasis of breast cancer. Methods: Mouse xenograft models and intravenous injection of exosomes were applied for analyzing the role of breast cancer cell-derived exosomes in vivo. Effects of exosomes secreted by the mildly metastatic MDA231 and its subline SCP28 with highly metastatic ability on osteoclasts formation were confirmed by TRAP staining, ELISA, microcomputed tomography, histomorphometric analyses, and pit formation assay. The candidate exosomal miRNAs for promoting osteoclastogenesis were globally screened by RNA-seq. qRT-PCR, western blot, confocal microscopy, and RNA interfering were performed to validate the function of exosomal miRNA. Results: Implantation of SCP28 tumor cells in situ leads to increased osteoclast activity and reduced bone density, which contributes to the formation of pre-metastatic niche for tumor cells. We found SCP28 cells-secreted exosomes are critical factors in promoting osteoclast differentiation and activation, which consequently accelerates bone lesion to reconstruct microenvironment for bone metastasis. Mechanistically, exosomal miR-21 derived from SCP28 cells facilitates osteoclastogenesis through regulating PDCD4 protein levels. Moreover, miR-21 level in serum exosomes of breast cancer patients with bone metastasis is significantly higher than that in other subpopulations. Conclusion: Our results indicate that breast cancer cell-derived exosomes play an important role in promoting breast cancer bone metastasis, which is associated with the formation of pre-metastatic niche via transferring miR-21 to osteoclasts. The data from patient samples further reflect the significance of miR-21 as a potential target for clinical diagnosis and treatment of breast cancer bone metastasis.


Assuntos
Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Exossomos/genética , Animais , Densidade Óssea/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Osteoclastos/patologia , Osteogênese/genética , Proteínas de Ligação a RNA/genética , Microambiente Tumoral/genética
4.
Cell Prolif ; 53(3): e12783, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32101357

RESUMO

OBJECTIVES: Cardiac Ca2+ signalling plays an essential role in regulating excitation-contraction coupling and cardiac remodelling. However, the response of cardiomyocytes to simulated microgravity and hypergravity and the effects on Ca2+ signalling remain unknown. Here, we elucidate the mechanisms underlying the proliferation and remodelling of HL-1 cardiomyocytes subjected to rotation-simulated microgravity and 4G hypergravity. MATERIALS AND METHODS: The cardiomyocyte cell line HL-1 was used in this study. A clinostat and centrifuge were used to study the effects of microgravity and hypergravity, respectively, on cells. Calcium signalling was detected with laser scanning confocal microscopy. Protein and mRNA levels were detected by Western blotting and real-time PCR, respectively. Wheat germ agglutinin (WGA) staining was used to analyse cell size. RESULTS: Our data showed that spontaneous calcium oscillations and cytosolic calcium concentration are both increased in HL-1 cells after simulated microgravity and 4G hypergravity. Increased cytosolic calcium leads to activation of calmodulin-dependent protein kinase II/histone deacetylase 4 (CaMKII/HDAC4) signalling and upregulation of the foetal genes ANP and BNP, indicating cardiac remodelling. WGA staining indicated that cell size was decreased following rotation-simulated microgravity and increased following 4G hypergravity. Moreover, HL-1 cell proliferation was increased significantly under hypergravity but not rotation-simulated microgravity. CONCLUSIONS: Our study demonstrates for the first time that Ca2+ /CaMKII/HDAC4 signalling plays a pivotal role in myocardial remodelling under rotation-simulated microgravity and hypergravity.


Assuntos
Sinalização do Cálcio , Hipergravidade , Miócitos Cardíacos/metabolismo , Simulação de Ausência de Peso , Animais , Cálcio/metabolismo , Linhagem Celular , Camundongos , Miócitos Cardíacos/citologia
5.
Asian J Pharm Sci ; 13(3): 289-296, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-32104402

RESUMO

Endotoxin detection is an important step in drug characterization. Herein we found that a chemotherapeutic drug nanoformulation composed of irinotecan hydrochloride (CPT-11) and an amphiphilic molecule DSPE-mPEG2000 can interfere with the limulus amebocyte lysate assay (LAL). Furthermore, the rabbit pyrogen test (RPT) results indicated that at a relatively high dosage, the drug irinotecan hydrochloride can induce a hypothermia effect which may render the RPT results ambiguous in determination of the safety of the drug formulation.Our findings demonstrate limitations of endotoxin detection in micellar drugs, and call for the necessity of developing reliable endotoxin detection methods that can overcome the interference of nanomaterials in order to better ensure the drug safety of patients in future pharmaceutical drug development.

6.
Biochem Biophys Res Commun ; 465(2): 305-11, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26277391

RESUMO

To examine the role of the intracellular labile iron pool (LIP) in the induction of inflammatory responses, we investigated the anti-inflammatory effect of the iron chelator deferoxamine (DFO) on lipopolysaccharide (LPS)-induced inflammatory responses in RAW264.7 macrophage cells and endotoxic shock in mice in the present study. Our data showed that DFO significantly decreased LPS-induced LIP and ROS upregulation. We then found that DFO inhibited phosphorylation of MAP kinases such as ERK and p38 and also inhibited the activation of NF-κB induced by LPS. Furthermore, the production of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), nitric oxide (NO) and prostaglandin E2 (PGE2) induced by LPS was inhibited by DFO in RAW264.7 macrophages. Administration of DFO significantly decreased the mortality and improved the survival of septic mice with lethal endotoxemia in LPS-injected mice. These results demonstrate that iron plays a pivotal role in the induction of inflammatory responses and against septic shock. DFO has effective inhibitory effect on the production of inflammatory mediators via suppressing activation of MAPKs and NF-κB signaling pathways; it also has a protective effect on LPS-induced endotoxic shock in mice. Our findings open doors to further studies directed at exploring a new class of drugs against septic shock or other inflammatory diseases by modulating cellular chelatable iron.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Desferroxamina/farmacologia , Quelantes de Ferro/farmacologia , Ferro/metabolismo , Choque Séptico/tratamento farmacológico , Animais , Anti-Inflamatórios não Esteroides/metabolismo , Linhagem Celular , Desferroxamina/metabolismo , Dinoprostona/antagonistas & inibidores , Dinoprostona/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Quelantes de Ferro/metabolismo , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Choque Séptico/induzido quimicamente , Choque Séptico/metabolismo , Choque Séptico/mortalidade , Transdução de Sinais , Análise de Sobrevida , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...