Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Org Chem ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042018

RESUMO

Asymmetric reduction of 2-chloro-1-(6-fluorochroman-2-yl)ethan-1-one (NEB-7) into 2-chloro-1-(6-fluorochroman-2-yl)ethan-1-ol (NEB-8) is the crucial step for synthesis of liposoluble ß1 receptor blocker nebivolol. Four efficient and stereoselective alcohol dehydrogenases were identified, enabling the stereoselective synthesis of all enantiomers of NEB-8 at a substrate loading of 137 g·L-1 with ee values of >99% and high space-time yields. This study provides novel biocatalysts for the efficient synthesis of nebivolol precursors and uncovers the molecular basis for enantioselectivity manipulation by parametrization of Prelog's rule.

2.
Heliyon ; 10(11): e31990, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38912436

RESUMO

The tourism network attention as a reflection of tourism demand is closely related to the tourism flow, the differences between the two has become an important criterion for judging the efficiency of destination tourism demand conversion, as well as a manifestation of the balance and coordination of destination tourism industry. Against the background of insufficient release of tourism demand in China, research on the development differences between tourism network attention and tourism flow can provide a basis for demand-side management and high-quality development. Based on the theory of spatial mismatch, this research analyzes the spatial development difference between the tourism network attention and the tourism flow in Shanghai from 2012 to 2021 using methods such as center of gravity model, spatial mismatch index, and two-dimensional combination matrix. The results show: (1) According to the analysis of the center of gravity model, there was a shift of the center of gravity of tourism network attention with the direction of "south-north", while the tourism flow shifted "west-east"; the center of gravity between tourism network attention and tourism flow began to diverge from 2012 to 2016, gradually converged from 2016 to 2019, and then gradually deviated again after 2020. (2) According to the spatial mismatch index, the spatial mismatch types between tourism network attention and tourism flow in various Districts of Shanghai are mainly negative and low mismatch, with high mismatch areas mainly distributed in the eastern and southwestern parts of Shanghai. (3) Combining the two-dimensional combination matrix, it can be observed that the spatial development difference between tourism network attention and tourism flow in Shanghai show a characteristic of "enlarging-shrinking-enlarging". From 2012 to 2016, the spatial development difference between tourism network attention and tourism flow in Shanghai continuously expanded; from 2017 to 2019, the spatial development difference continuously shrank; and from 2020 to 2021, the spatial differences expanded again. (4) The analysis results of the panel data model show that the development of tourism resources and the level of tourism services have a positive promoting effect on the evolution of spatial mismatch, while the social basic development environment has a negative effect. The research results not only meet the needs of evaluating the high-quality development of the tourism industry in the current economic restructuring, providing direction for the high-quality development of the regional tourism industry, but also enrich the research content of network attention as a tourism element participating in the evaluation of tourism industry development quality, and deepen the relationship research between network attention and tourism flow.

3.
Viruses ; 16(5)2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38793554

RESUMO

Monitoring the long-term changes in antibody and cellular immunity following Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is crucial for understanding immune mechanisms that prevent reinfection. In March 2023, we recruited 167 participants from the Changning District, Shanghai, China. A subset of 66 participants that were infected between November 2022 and January 2023 was selected for longitudinal follow-up. The study aimed to investigate the dynamics of the immune response, including neutralizing antibodies (NAbs), anti-spike (S)-immunoglobulin G (IgG), anti-S-IgM, and lymphocyte profiles, by analyzing peripheral blood samples collected three to seven months post infection. A gradual decrease in NAbs and IgG levels were observed from three to seven months post infection. No significant differences in NAbs and IgG titers were found across various demographics, including age, sex, occupation, and symptomatic presentation, across five follow-up assessments. Additionally, a strong correlation between NAbs and IgG levels was identified. Lymphocyte profiles showed a slight change at five months but had returned to baseline levels by seven months post infection. Notably, healthcare workers exhibited lower B-cell levels compared to police officers. Our study demonstrated that the immune response to SARS-CoV-2 infection persisted for at least seven months. Similar patterns in the dynamics of antibody responses and cellular immunity were observed throughout this period.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Imunoglobulina G , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/epidemiologia , China/epidemiologia , Masculino , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Feminino , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Adulto , SARS-CoV-2/imunologia , Imunoglobulina G/sangue , Pessoa de Meia-Idade , Estudos Longitudinais , Imunoglobulina M/sangue , Imunidade Celular , Glicoproteína da Espícula de Coronavírus/imunologia , Pessoal de Saúde
5.
Asian J Surg ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38719638
6.
Chin J Nat Med ; 22(1): 75-88, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38278561

RESUMO

NAD(P)H: quinone oxidoreductase 1 (NQO1) is a flavin protease highly expressed in various cancer cells. NQO1 catalyzes a futile redox cycle in substrates, leading to substantial reactive oxygen species (ROS) production. This ROS generation results in extensive DNA damage and elevated poly (ADP-ribose) polymerase 1 (PARP1)-mediated consumption of nicotinamide adenine dinucleotide (NAD+), ultimately causing cell death. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD+ salvage synthesis pathway, emerges as a critical target in cancer therapy. The concurrent inhibition of NQO1 and NAMPT triggers hyperactivation of PARP1 and intensive NAD+ depletion. In this study, we designed, synthesized, and assessed a novel series of proqodine A derivatives targeting both NQO1 and NAMPT. Among these, compound T8 demonstrated potent antitumor properties. Specifically, T8 selectively inhibited the proliferation of MCF-7 cells and induced apoptosis through mechanisms dependent on both NQO1 and NAMPT. This discovery offers a promising new molecular entity for advancing anticancer research.


Assuntos
NAD , Nicotinamida Fosforribosiltransferase , Humanos , NAD/metabolismo , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Citocinas/metabolismo , Quinonas , Oxirredutases
7.
Plant Commun ; 5(1): 100680, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37660252

RESUMO

Tropane alkaloids (TAs), which are anticholinergic agents, are an essential class of natural compounds, and there is a growing demand for TAs with anesthetic, analgesic, and spasmolytic effects. Anisodus acutangulus (Solanaceae) is a TA-producing plant that was used as an anesthetic in ancient China. In this study, we assembled a high-quality, chromosome-scale genome of A. acutangulus with a contig N50 of 7.4 Mb. A recent whole-genome duplication occurred in A. acutangulus after its divergence from other Solanaceae species, which resulted in the duplication of ADC1 and UGT genes involved in TA biosynthesis. The catalytic activities of H6H enzymes were determined for three Solanaceae plants. On the basis of evolution and co-expressed genes, AaWRKY11 was selected for further analyses, which revealed that its encoded transcription factor promotes TA biosynthesis by activating AaH6H1 expression. These findings provide useful insights into genome evolution related to TA biosynthesis and have potential implications for genetic manipulation of TA-producing plants.


Assuntos
Anestésicos , Solanaceae , Tropanos/análise , Tropanos/metabolismo , Solanaceae/genética , Solanaceae/metabolismo , Cromossomos/química , Cromossomos/metabolismo , Anestésicos/metabolismo , China
8.
Sci China Life Sci ; 67(4): 803-816, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38087029

RESUMO

Living fossils are evidence of long-term sustained ecological success. However, whether living fossils have little molecular changes remains poorly known, particularly in plants. Here, we have introduced a novel method that integrates phylogenomic, comparative genomic, and ecological niche modeling analyses to investigate the rate of molecular evolution of Eupteleaceae, a Cretaceous relict angiosperm family endemic to East Asia. We assembled a high-quality chromosome-level nuclear genome, and the chloroplast and mitochondrial genomes of a member of Eupteleaceae (Euptelea pleiosperma). Our results show that Eupteleaceae is most basal in Ranunculales, the earliest-diverging order in eudicots, and shares an ancient whole-genome duplication event with the other Ranunculales. We document that Eupteleaceae has the slowest rate of molecular changes in the observed angiosperms. The unusually low rate of molecular evolution of Eupteleaceae across all three independent inherited genomes and genes within each of the three genomes is in association with its conserved genome architecture, ancestral woody habit, and conserved niche requirements. Our findings reveal the evolution and adaptation of living fossil plants through large-scale environmental change and also provide new insights into early eudicot diversification.


Assuntos
Evolução Molecular , Magnoliopsida , Filogenia , Ranunculales , Genômica , Magnoliopsida/genética , Ecossistema , Fósseis
9.
Hortic Res ; 10(9): uhad147, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37691964

RESUMO

MicroTom has a short growth cycle and high transformation efficiency, and is a prospective model plant for studying organ development, metabolism, and plant-microbe interactions. Here, with a newly assembled reference genome for this tomato cultivar and abundant RNA-seq data derived from tissues of different organs/developmental stages/treatments, we constructed multiple gene co-expression networks, which will provide valuable clues for the identification of important genes involved in diverse regulatory pathways during plant growth, e.g. arbuscular mycorrhizal symbiosis and fruit development. Additionally, non-coding RNAs, including miRNAs, lncRNAs, and circRNAs were also identified, together with their potential targets. Interacting networks between different types of non-coding RNAs (miRNA-lncRNA), and non-coding RNAs and genes (miRNA-mRNA and lncRNA-mRNA) were constructed as well. Our results and data will provide valuable information for the study of organ differentiation and development of this important fruit. Lastly, we established a database (http://eplant.njau.edu.cn/microTomBase/) with genomic and transcriptomic data, as well as details of gene co-expression and interacting networks on MicroTom, and this database should be of great value to those who want to adopt MicroTom as a model plant for research.

10.
Asian J Surg ; 46(12): 5507-5508, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37537071

RESUMO

Teachers have applied the "Hand as Foot" teaching method in anatomy teaching. It helps students understand and remember effectively, triggers students' interest in learning, and stimulates creativity. Guided by the teacher, my classmates and I also attempted to design some simple gestures to show the anatomical structures of the bony labyrinth to facilitate memorization. Here, as a medical student, I am glad to share my ideas with you.


Assuntos
Orelha Interna , Estudantes de Medicina , Humanos , Aprendizagem , Mãos ,
11.
Biosensors (Basel) ; 13(6)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37367023

RESUMO

Hydrogen peroxide (H2O2) is one of the important reactive oxygen species (ROS), which is closely related to many pathological and physiological processes in living organisms. Excessive H2O2 can lead to cancer, diabetes, cardiovascular diseases, and other diseases, so it is necessary to detect H2O2 in living cells. Since this work designed a novel fluorescent probe to detect the concentration of H2O2, the H2O2 reaction group arylboric acid was attached to the fluorescein 3-Acetyl-7-hydroxycoumarin as a specific recognition group for the selective detection of hydrogen peroxide. The experimental results show that the probe can effectively detect H2O2 with high selectivity and measure cellular ROS levels. Therefore, this novel fluorescent probe provides a potential monitoring tool for a variety of diseases caused by H2O2 excess.


Assuntos
Corantes Fluorescentes , Peróxido de Hidrogênio , Humanos , Espécies Reativas de Oxigênio , Células HeLa , Fluoresceína
12.
Hortic Res ; 10(4): uhad027, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37090094

RESUMO

Fragaria vesca, commonly known as wild or woodland strawberry, is the most widely distributed diploid Fragaria species and is native to Europe and Asia. Because of its small plant size, low heterozygosity, and relative ease of genetic transformation, F. vesca has been a model plant for fruit research since the publication of its Illumina-based genome in 2011. However, its genomic contribution to octoploid cultivated strawberry remains a long-standing question. Here, we de novo assembled and annotated a telomere-to-telomere, gap-free genome of F. vesca 'Hawaii 4', with all seven chromosomes assembled into single contigs, providing the highest completeness and assembly quality to date. The gap-free genome is 220 785 082 bp in length and encodes 36 173 protein-coding gene models, including 1153 newly annotated genes. All 14 telomeres and seven centromeres were annotated within the seven chromosomes. Among the three previously recognized wild diploid strawberry ancestors, F. vesca, F. iinumae, and F. viridis, phylogenomic analysis showed that F. vesca and F. viridis are the ancestors of the cultivated octoploid strawberry F. × ananassa, and F. vesca is its closest relative. Three subgenomes of F. × ananassa belong to the F. vesca group, and one is sister to F. viridis. We anticipate that this high-quality, telomere-to-telomere, gap-free F. vesca genome, combined with our phylogenomic inference of the origin of cultivated strawberry, will provide insight into the genomic evolution of Fragaria and facilitate strawberry genetics and molecular breeding.

13.
Genes (Basel) ; 14(2)2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36833349

RESUMO

A variety of secondary metabolites contributing to plant growth are synthesized by bacterial nonribosomal peptide synthases (NRPSs). Among them, the NRPS biosynthesis of surfactin is regulated by the SrfA operon. To explore the molecular mechanism for the diversity of surfactins produced by bacteria within the genus Bacillus, we performed a genome-wide identification study focused on three critical genes of the SrfA operon-SrfAA, SrfAB and SrfAC-from 999 Bacillus genomes (belonging to 47 species). Gene family clustering indicated the three genes can be divided into 66 orthologous groups (gene families), of which a majority comprised members of multiple genes (e.g., OG0000009 had members of all three SrfAA, SrfAB and SrfAC genes), indicating high sequence similarity among the three genes. Phylogenetic analyses also found that none of the three genes formed monophyletic groups, but were usually arranged in a mixed manner, suggesting the close evolutionary relationship among the three genes. Considering the module structure of the three genes, we propose that self-duplication, especially tandem duplications, might have contributed to the initial establishment of the entire SrfA operon, and further gene fusion and recombination as well as accumulated mutations might have continuously shaped the different functional roles of SrfAA, SrfAB and SrfAC. Overall, this study provides novel insight into metabolic gene clusters and operon evolution in bacteria.


Assuntos
Bacillus , Bacillus subtilis/genética , Filogenia , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/metabolismo , Óperon
14.
Plant J ; 113(5): 1021-1034, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36602036

RESUMO

Saururus chinensis, an herbaceous magnoliid without perianth, represents a clade of early-diverging angiosperms that have gone through woodiness-herbaceousness transition and pollination obstacles: the characteristic white leaves underneath inflorescence during flowering time are considered a substitute for perianth to attract insect pollinators. Here, using the newly sequenced S. chinensis genome, we revisited the phylogenetic position of magnoliids within mesangiosperms, and recovered a sister relationship for magnoliids and Chloranthales. By considering differentially expressed genes, we identified candidate genes that are involved in the morphogenesis of the white leaves in S. chinensis. Among those genes, we verified - in a transgenic experiment with Arabidopsis - that increasing the expression of the "pseudo-etiolation in light" gene (ScPEL) can inhibit the biosynthesis of chlorophyll. ScPEL is thus likely responsible for the switches between green and white leaves, suggesting that changes in gene expression may underlie the evolution of pollination strategies. Despite being an herbaceous plant, S. chinensis still has vascular cambium and maintains the potential for secondary growth as a woody plant, because the necessary machinery, i.e., the entire gene set involved in lignin biosynthesis, is well preserved. However, similar expression levels of two key genes (CCR and CAD) between the stem and other tissues in the lignin biosynthesis pathway are possibly associated with the herbaceous nature of S. chinensis. In conclusion, the S. chinensis genome provides valuable insights into the adaptive evolution of pollination in Saururaceae and reveals a possible mechanism for the evolution of herbaceousness in magnoliids.


Assuntos
Arabidopsis , Magnoliopsida , Saururaceae , Filogenia , Polinização/genética , Lignina , Magnoliopsida/genética
15.
Genes (Basel) ; 13(12)2022 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-36553496

RESUMO

Paeonia suffruticosa Andr., a member of Paeoniaceae, is native to China. In its 1600 years' cultivation, more than 2000 cultivars for different purposes (ornamental, medicinal and oil use) have been inbred. However, there are still some controversies regarding the provenance of tree peony cultivars and the phylogenetic relationships between and within different cultivar groups. In this study, plastid genome sequencing was performed on 10 representative tree peony cultivars corresponding to 10 different flower types. Structure and comparative analyses of the plastid genomes showed that the total lengths of the chloroplast genome of the 10 cultivars ranged from 152,153 to 152,385 bp and encoded 84-88 protein-coding genes, 8 rRNAs and 31-40 tRNAs. The number of simple sequence repeats and interspersed repeat sequences of the 10 cultivars ranged from 65-68 and 40-42, respectively. Plastid phylogenetic relationships of Paeonia species/cultivars were reconstructed incorporating data from our newly sequenced plastid genomes and 15 published species, and results showed that subsect. Vaginatae was the closest relative to the central plains cultivar group with robust support, and that it may be involved in the formation of the group. Paeonia ostii was recovered as a successive sister group to this lineage. Additionally, eleven morphological characteristics of flowers were mapped to the phylogenetic skeleton to reconstruct the evolutionary trajectory of flower architecture in Paeoniaceae.


Assuntos
Paeonia , Paeonia/genética , Filogenia , Flores/genética , Mapeamento Cromossômico , Plastídeos/genética
16.
Front Plant Sci ; 13: 982323, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072321

RESUMO

The Ilex L. (hollies) genus of Aquifoliaceae shows high species diversity in tropical and subtropical regions of Asia and South America. Throughout the range of the genus, Ilex species have been widely used in beverage and medicine production and as ornamentals. Here, we assembled a high-quality, chromosome-level genome of Ilex latifolia, which has extremely high economic value because of its useful secondary metabolite production and the high ornamental value of its decorative red berries. The 99.8% genome sequence was anchored to 20 pseudochromosomes, with a total length of 766.02 Mb and a scaffold N50 of 33.45 Mb. Based on the comparative genomic analysis of 14 angiosperm species, we recovered I. latifolia as the sister group to all other campanulids. Two whole-genome duplication (WGD) events were identified in hollies: one shared ancient WGD in the ancestor of all eudicots and a recent and independent WGD in hollies. We performed a genome-wide search to screen candidate genes involved in the biosynthesis of pentacyclic triterpenoid saponins in I. latifolia. Three subfamilies of CYP450 (CYP71A, CYP72A, and CYP716A) appear to have expanded. The transcriptomic analysis of I. latifolia leaves at five developmental stages revealed that two CYP716A genes and one CYP72A gene probably play important roles in this biosynthetic pathway. In addition, we totally identified 12 genes in the biosynthesis pathways of pelargonidin and cyanidin and observed their differential expression in green and red fruit pericarps, suggesting an association between pelargonidin and cyanidin biosynthesis and fruit pericarp color change. The accumulation of pelargonidin and cyanidin is expected to play an important role in the ornamental value of I. latifolia. Altogether, this study elucidated the molecular basis of the medicinal and ornamental value of I. latifolia, providing a data basis and promising clues for further applications.

17.
Hortic Res ; 9: uhac067, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480957

RESUMO

Hibiscus hamabo is a semi-mangrove species with strong tolerance to salt and waterlogging stress. However, the molecular basis and mechanisms that underlie this strong adaptability to harsh environments remain poorly understood. Here, we assembled a high-quality, chromosome-level genome of this semi-mangrove plant and analyzed its transcriptome under different stress treatments to reveal regulatory responses and mechanisms. Our analyses suggested that H. hamabo has undergone two recent successive polyploidy events, a whole-genome duplication followed by a whole-genome triplication, resulting in an unusually large gene number (107 309 genes). Comparison of the H. hamabo genome with that of its close relative Hibiscus cannabinus, which has not experienced a recent WGT, indicated that genes associated with high stress resistance have been preferentially preserved in the H. hamabo genome, suggesting an underlying association between polyploidy and stronger stress resistance. Transcriptomic data indicated that genes in the roots and leaves responded differently to stress. In roots, genes that regulate ion channels involved in biosynthetic and metabolic processes responded quickly to adjust the ion concentration and provide metabolic products to protect root cells, whereas no such rapid response was observed from genes in leaves. Using co-expression networks, potential stress resistance genes were identified for use in future functional investigations. The genome sequence, along with several transcriptome datasets, provide insights into genome evolution and the mechanism of salt and waterlogging tolerance in H. hamabo, suggesting the importance of polyploidization for environmental adaptation.

18.
Nat Plants ; 8(4): 389-401, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35437001

RESUMO

Cycads represent one of the most ancient lineages of living seed plants. Identifying genomic features uniquely shared by cycads and other extant seed plants, but not non-seed-producing plants, may shed light on the origin of key innovations, as well as the early diversification of seed plants. Here, we report the 10.5-Gb reference genome of Cycas panzhihuaensis, complemented by the transcriptomes of 339 cycad species. Nuclear and plastid phylogenomic analyses strongly suggest that cycads and Ginkgo form a clade sister to all other living gymnosperms, in contrast to mitochondrial data, which place cycads alone in this position. We found evidence for an ancient whole-genome duplication in the common ancestor of extant gymnosperms. The Cycas genome contains four homologues of the fitD gene family that were likely acquired via horizontal gene transfer from fungi, and these genes confer herbivore resistance in cycads. The male-specific region of the Y chromosome of C. panzhihuaensis contains a MADS-box transcription factor expressed exclusively in male cones that is similar to a system reported in Ginkgo, suggesting that a sex determination mechanism controlled by MADS-box genes may have originated in the common ancestor of cycads and Ginkgo. The C. panzhihuaensis genome provides an important new resource of broad utility for biologists.


Assuntos
Cycas , Cycadopsida/genética , Cycas/genética , Genes de Plantas , Ginkgo biloba/genética , Filogenia , Sementes/genética
19.
Genetics ; 220(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35143673

RESUMO

In plants, large numbers of R genes, which segregate as loci with alternative alleles conferring different levels of disease resistance to pathogens, have been maintained over a long period of evolution. The reason why hosts harbor susceptible alleles in view of their null contribution to resistance is unclear. In rice, a single copy gene, Pi-ta, segregates for 2 expressed clades of alleles, 1 resistant and the other susceptible. We simulated loss-of-function of the Pi-ta susceptible allele using the CRISPR/Cas9 system to detect subsequent fitness changes and obtained insights into fitness effects related to the retention of the Pi-ta susceptible allele. Our creation of an artificial knockout of the Pi-ta susceptible allele suffered fitness-related trait declines of up to 49% in terms of filled grain yield upon the loss of Pi-ta function. The Pi-ta susceptible alleles might serve as an off-switch to downstream immune signaling, thus contributing to the fine-tuning of plant defense responses. The results demonstrated that the susceptible Pi-ta alleles should have evolved pleiotropic functions, facilitating their retention in populations. As Pi-ta is a single copy gene with no paralogs in the genome, its function cannot be compensated by an alternative gene; whereas most other R genes form gene clusters by tandem duplications, and the function could be compensated by paralogs with high sequence similarity. This attempt to evaluate the fitness effects of the R gene in crops indicates that not all disease resistance genes incur fitness costs, which also provides a plausible explanation for how host genomes can tolerate the possible genetic load associated with a vast repertoire of R genes.


Assuntos
Oryza , Doenças das Plantas , Alelos , Resistência à Doença/genética , Oryza/genética , Fenótipo , Doenças das Plantas/genética
20.
Hortic Res ; 8(1): 141, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145222

RESUMO

Rosa rugosa, commonly known as rugged rose, is a perennial ornamental shrub. It produces beautiful flowers with a mild fragrance and colorful seed pods. Unlike many other cultivated roses, R. rugosa adapts to a wide range of habitat types and harsh environmental conditions such as salinity, alkaline, shade, drought, high humidity, and frigid temperatures. Here, we produced and analyzed a high-quality genome sequence for R. rugosa to understand its ecology, floral characteristics and evolution. PacBio HiFi reads were initially used to construct the draft genome of R. rugosa, and then Hi-C sequencing was applied to assemble the contigs into 7 chromosomes. We obtained a 382.6 Mb genome encoding 39,704 protein-coding genes. The genome of R. rugosa appears to be conserved with no additional whole-genome duplication after the gamma whole-genome triplication (WGT), which occurred ~100 million years ago in the ancestor of core eudicots. Based on a comparative analysis of the high-quality genome assembly of R. rugosa and other high-quality Rosaceae genomes, we found a unique large inverted segment in the Chinese rose R. chinensis and a retroposition in strawberry caused by post-WGT events. We also found that floral development- and stress response signaling-related gene modules were retained after the WGT. Two MADS-box genes involved in floral development and the stress-related transcription factors DREB2A-INTERACTING PROTEIN 2 (DRIP2) and PEPTIDE TRANSPORTER 3 (PTR3) were found to be positively selected in evolution, which may have contributed to the unique ability of this plant to adapt to harsh environments. In summary, the high-quality genome sequence of R. rugosa provides a map for genetic studies and molecular breeding of this plant and enables comparative genomic studies of Rosa in the near future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...