Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimage Clin ; 43: 103641, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39032208

RESUMO

OBJECTIVE: The pathogenesis of depression in patients with Parkinson's disease (PD) is poorly understood. Therefore, this study aimed to explore the changes in γ-aminobutyric acid (GABA) and glutamate plus glutamine (Glx) levels in patients with PD with or without depression determined using MEscher-GArwood Point Resolved Spectroscopy (MEGA-PRESS). MATERIALS AND METHODS: A total of 83 patients with primary PD and 24 healthy controls were included. Patients with PD were categorized into depressed PD (DPD, n = 19) and nondepressed PD (NDPD, n = 64) based on the 17-item Hamilton Depression Rating Scale. All participants underwent T1-weighted imaging and MEGA-PRESS sequence to acquire GABA+ and Glx values. The MEGA-PRESS sequence was conducted using 18.48 mL voxels in the left thalamus and medial frontal cortex. The GABA+, Glx, and creatine values were quantified using Gannet 3.1 software. RESULTS: The GABA+ and Glx values were not significantly disparate between patients with PD and controls in the thalamus and medial frontal cortex. However, the levels of N-acetyl aspartate/creatine and choline/creatine in the left thalamus were significantly lower in patients with PD than in controls (P = .031, P = .009). The GABA+/Water and GABA+/Creatine in the medial frontal cortex were higher in DPD than in NDPD (P = .001, P = .004). The effects of depression on Glx or other metabolite levels were not evident, and no significant difference in metabolite values was noted in the left thalamus among all groups (P > .05). CONCLUSIONS: GABA+ levels increased in the medial frontal cortex in DPD, which may be more closely related to depressive pathology. Thus, alterations in GABAergic function in special brain structures may be related to the clinical manifestations of PD symptoms, and hence mediating this function might help in treating depression in PD.

2.
Sci Rep ; 4: 6584, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25322802

RESUMO

Decomposition of soil organic matter (SOM) is sensitive to vegetation and climate change. Here, we investigated the influence of changes in forest types on the mineralization of soil carbon (C) and nitrogen (N), and their temperature sensitivity (Q10) and coupling relationships by using a laboratory soil incubation experiments. We sampled soils from four forest types, namely, a primary Quercus liaotungensis forest (QL), Larix principis-rupprechtii plantation (LP), Pinus tabulaeformis plantation (PT), and secondary shrub forest (SS) in temperate northern China. The results showed that soil C and N mineralization differed significantly among forest types. Soil C and N mineralization were closely coupled in all plots, and C:N ratios of mineralized SOM ranged from 2.54 to 4.12. Forest type significantly influenced the Q10 values of soil C and N mineralization. The activation energy (Ea) of soil C and N mineralization was negatively related to the SOM quality index in all forest types. The reverse relationships suggested that the carbon quality-temperature (CQT) hypothesis was simultaneously applicable to soil C and N mineralization. Our findings show that the coupled relationships of soil C and N mineralization can be affected by vegetation change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...