Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337
Filtrar
1.
Clin Nutr ; 43(8): 1812-1813, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38955056
2.
Bioorg Chem ; 150: 107551, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38971094

RESUMO

Cancer is the most severe health problem facing most people today. Photodynamic therapy (PDT) for tumors has attracted attention because of its non-invasive nature, negligible adverse reactions, and high spatiotemporal selectivity. Developing biocompatible photosensitizers that can target, guide, and efficiently kill cancer cells is desirable in PDT. Here, two amphiphilic organic compounds, PS-I and PSS-II, were synthesized based on the D-π-A structure with a positive charge. The two AIEgens exhibited near-infrared emission, large Stokes shift, high 1O2 and O2-∙ generation efficiency, good biocompatibility, and photostability. They were co-incubated with cancer cells and eventually accumulated to lysosomes by cell imaging experiments. In vitro and in vivo experiments demonstrated that PS-I and PSS-II could effectively kill cancer cells and sufficiently inhibit tumor growth under light irradiation. PS-I had a higher fluorescence quantum yield in the aggregated state, which made it better for bio-imaging in imaging-guided photodynamic therapy. In contrast, PSS-II with a longer conjugated structure had more ROS generation to kill tumor cells under illumination, and the tumor growth inhibition of mice reached 71.95% during the treatment. No observable injury or undesirable outcomes were detected in the vital organs of the mice within the treatment group, suggesting that PSS-II/PS-I had a promising future in efficient imaging-guided PDT for cancer.

3.
Sensors (Basel) ; 24(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931628

RESUMO

The Taiji program is dedicated to the detection of middle and low-frequency gravitational waves, targeting the 0.1 mHz to 1 Hz frequency band. The project requires an acceleration residual sensitivity of 3 × 10-15 ms-2/Hz1/2, which necessitates a capacitance sensing resolution of 1 aF/Hz1/2 for the capacitive sensing system within the specified frequency range. The noise level of the resonant bridge significantly influences the resolution. Addressing the challenges in enhancing transformer performance parameters in existing resonant capacitance bridges and the constraints on improving the characteristics of resonant capacitance bridges, this study introduces a novel approach to reduce bridge thermal noise without optimizing existing parameters. The simulation results demonstrate that this scheme can reduce the noise to 0.7 times the original level and further reduce bridge thermal noise when other parameters affecting noise are optimized. This not only mitigates the demands for other performance parameters but also increases the range of maximum acceptable resonant frequency deviations and reduces its sensitivity to such variations. Experimental validation confirms that the proposed scheme effectively reduces noise by 0.7 times and improves the resolution of capacitance sensing to 0.6 aF/Hz1/2, thereby advancing the Taiji program gravitational wave detection capabilities.

4.
Front Oncol ; 14: 1389250, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38854720

RESUMO

Background: Distinguishing between prostatic cancer (PCa) and chronic prostatitis (CP) is sometimes challenging, and Gleason grading is strongly associated with prognosis in PCa. The continuous-time random-walk diffusion (CTRW) model has shown potential in distinguishing between PCa and CP as well as predicting Gleason grading. Purpose: This study aimed to quantify the CTRW parameters (α, ß & Dm) and apparent diffusion coefficient (ADC) of PCa and CP tissues; and then assess the diagnostic value of CTRW and ADC parameters in differentiating CP from PCa and low-grade PCa from high-grade PCa lesions. Study type: Retrospective (retrospective analysis using prospective designed data). Population: Thirty-one PCa patients undergoing prostatectomy (mean age 74 years, range 64-91 years), and thirty CP patients undergoing prostate needle biopsies (mean age 68 years, range 46-79 years). Field strength/Sequence: MRI scans on a 3.0T scanner (uMR790, United Imaging Healthcare, Shanghai, China). DWI were acquired with 12 b-values (0, 50, 100, 150, 200, 500, 800, 1200, 1500, 2000, 2500, 3000 s/mm2). Assessment: CTRW parameters and ADC were quantified in PCa and CP lesions. Statistical tests: The Mann-Whitney U test was used to evaluate the differences in CTRW parameters and ADC between PCa and CP, high-grade PCa, and low-grade PCa. Spearman's correlation of the pathologic grading group (GG) with CTRW parameters and ADC was evaluated. The usefulness of CTRW parameters, ADC, and their combinations (Dm, α and ß; Dm, α, ß, and ADC) to differentiate PCa from CP and high-grade PCa from low-grade PCa was determined by logistic regression and receiver operating characteristic curve (ROC) analysis. Delong test was used to compare the differences among AUCs. Results: Significant differences were found for the CTRW parameters (α, Dm) between CP and PCa (all P<0.001), high-grade PCa, and low-grade PCa (α:P=0.024, Dm:P=0.021). GG is correlated with certain CTRW parameters and ADC(α:P<0.001,r=-0.795; Dm:P<0.001,r=-0.762;ADC:P<0.001,r=-0.790). Moreover, CTRW parameters (α, ß, Dm) combined with ADC showed the best diagnostic efficacy for distinguishing between PCa and CP as well as predicting Gleason grading. The differences among AUCs of ADC, CTRW parameters and their combinations were not statistically significant (P=0.051-0.526). Conclusion: CTRW parameters α and Dm, as well as their combination were beneficial to distinguish between CA and PCa, low-grade PCa and high-grade PCa lesions, and CTRW parameters and ADC had comparable diagnostic performance.

5.
Anal Chem ; 96(27): 11026-11035, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38938163

RESUMO

Sensing temperature at the subcellular level is pivotal for gaining essential thermal insights into diverse biological processes. However, achieving sensitive and accurate sensing of the intracellular temperature remains a challenge. Herein, we develop a ratiometric organic fluorescent nanothermometer with reverse signal changes for the ultrasensitive mapping of intracellular temperature. The nanothermometer is fabricated from a binary mixture of saturated fatty acids with a noneutectic composition, a red-emissive aggregation-caused quenching luminogen, and a green-emissive aggregation-induced emission luminogen using a modified nanoprecipitation method. Different from the eutectic mixture with a single phase-transition point, the noneutectic mixture possesses two solid-liquid phase transitions, which not only allows for reversible regulation of the aggregation states of the encapsulated luminogens but also effectively broadens the temperature sensing range (25-48 °C) across the physiological temperature range. Remarkably, the nanothermometer exhibits reverse and sensitive signal changes, demonstrating maximum relative thermal sensitivities of up to 63.66% °C-1 in aqueous systems and 44.01% °C-1 in the intracellular environment, respectively. Taking advantage of these outstanding thermometric performances, the nanothermometer is further employed to intracellularly monitor minute temperature variations upon chemical stimulation. This study provides a powerful tool for the exploration of dynamic cellular thermal activities, holding great promise in unveiling intricate physiological processes.


Assuntos
Corantes Fluorescentes , Temperatura , Termômetros , Corantes Fluorescentes/química , Humanos , Células HeLa
6.
Front Immunol ; 15: 1339680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881906

RESUMO

Background: SLE is a complex autoimmune disease with deleterious effects on various organs. Accumulating evidence has shown abnormal vitamin B12 and one-carbon flux contribute to immune dysfunction. Transcobalamin II (TCN2) belongs to the vitamin B12-binding protein family responsible for the cellular uptake of vitamin B12. The role of TCN2 in SLE is still unclear. Methods: We collected clinical information and blood from 51 patients with SLE and 28 healthy controls. RNA sequencing analysis, qPCR, and western blot confirmed the alteration of TCN2 in disease monocytes. The correlation between TCN2 expression and clinical features and serological abnormalities was analyzed. TCN2 heterozygous knockout THP1 cells were used to explore the effects of TCN2 dysfunction on monocytes. CCK-8 assay and EdU staining were used to detect cell proliferation. ELISA was conducted to assess vitamin B12, glutathione, and cytokines changes. UHPLC-MRM-MS/MS was used to detect changes in the intermediates of the one-carbon cycle. Flow cytometry is used to detect cell cycle, ROS, mitoROS, and CD14 changes. Results: Elevated TCN2 in monocytes was correlated positively with disease progression and specific tissue injuries. Using CD14+ monocytes and TCN2 genetically modified THP1 cell lines, we found that the TCN2 was induced by LPS in serum from SLE patients. TCN2 heterozygous knockout inhibited cellular vitamin B12 uptake and one-carbon metabolism, leading to cell proliferation arrest and decreased Toll-like receptor 4 (TLR4)-mediated CCL2 release. Methionine cycle metabolites, s-adenosylmethionine and homocysteine, rescued these effects, whereas folate treatment proved to be ineffective. Folate deficiency also failed to replicate the impact of TCN2 downregulation on THP1 inflammatory response. Conclusion: Our study elucidated the unique involvement of TCN2-driven one-carbon flux on SLE-associated monocyte behavior. Increased TCN2 may promote disease progression and tissue damage by enhancing one-carbon flux, fostering monocyte proliferation, and exacerbating TLR4 mediated inflammatory responses. The inhibition of TCN2 may be a promising therapeutic approach to ameliorate SLE.


Assuntos
Proliferação de Células , Ácido Fólico , Lúpus Eritematoso Sistêmico , Monócitos , Receptor 4 Toll-Like , Transcobalaminas , Humanos , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Monócitos/metabolismo , Monócitos/imunologia , Transcobalaminas/metabolismo , Transcobalaminas/genética , Feminino , Ácido Fólico/metabolismo , Masculino , Adulto , Inflamação/metabolismo , Inflamação/imunologia , Pessoa de Meia-Idade , Células THP-1 , Carbono/metabolismo , Vitamina B 12/metabolismo , Estudos de Casos e Controles
8.
Plant Cell Environ ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747645

RESUMO

Potassium (K) fertilisation has frequently been shown to enhance plant resistance against pathogens, though the mechanisms remain elusive. This study investigates the interaction dynamics between Nicotiana benthamiana and the pathogen Alternaria longipes under different planta K levels. On the host side, adding K activated the expressions of three NLR (nucleotide-binding domain and leucine-rich repeat-containing proteins) resistance genes, including NbRPM1, NbR1B23 and NbNBS12. Silencing these NLRs attenuated resistance in high-K (HK, 40.8 g/kg) plant, whereas their overexpression strengthened resistance in low-K (LK, 23.9 g/kg) plant. Typically, these NLRs mainly strengthened plant resistance via promoting the expression of pathogenesis-related genes (PRs), ROS burst and synthesis of antifungal metabolites in HK plant. On the pathogen side, the expression of effectors HKCSP1, HKCSP2 and LKCSP were shown to be related to planta K content. A. longipes mainly expressed effectors HKCSP1 and HKCSP2 in HK plant to interfere host resistance. HKCSP1 physically interacted with NbRPM1 to promote the degradation of NbRPM1, then attenuated related resistance in HK N. benthamiana. Meanwhile, HKCSP2 directly interacted with NbPR5 to suppress resistance in HK plant. In LK plant, A. longipes mainly deployed LKCSP that interacted with NbR1B23 to interfere reduce resistance in N. benthamiana. Overall, our research insights that both pathogen and host mobilise distinct strategies to outcompete each other during interactions in different K nutrient environments.

10.
Anal Bioanal Chem ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38802680

RESUMO

Mechanotransduction is the essential process that cells convert mechanical force into biochemical responses, and electrochemical sensor stands out from existing techniques by providing quantitative and real-time information about the biochemical signals during cellular mechanotransduction. However, the intracellular biochemical response evoked by mechanical force has been poorly monitored. In this paper, we report a method to apply local stretch on single cell and simultaneously monitor the ensuing intracellular biochemical signals. Specifically, a ferromagnetic micropipette was fabricated to locally stretch a single cell labeled with Fe3O4 nanoparticles under the external magnetic field, and the SiC@Pt nanowire electrode (SiC@Pt NWE) was inserted into the cell to monitor the intracellular hydrogen peroxide (H2O2) production induced by the local stretch. As a proof of concept, this work quantitatively investigated the elevated amount of H2O2 levels in single endothelial cell under different stretching amplitudes. This work puts forward a new research modality to manipulate and monitor the mechanotransduction at the single-cell level.

11.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1361-1368, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621984

RESUMO

This study aims to explore the pathogenesis of myocardial ischaemia reperfusion injury(MIRI) based on oxidative stress-mediated programmed cell death and the mechanism and targets of Chaihu Sanshen Capsules in treating MIRI via the protein kinase Cß(PKCßⅡ)/NADPH oxidase 2(NOX2)/reactive oxygen species(ROS) signaling pathway. The rat model of MIRI was established by the ligation of the left anterior descending branch. Rats were randomized into 6 groups: sham group, model group, clinically equivalent-, high-dose Chaihu Sanshen Capsules groups, N-acetylcysteine group, and CGP53353 group. After drug administration for 7 consecutive days, the area of myocardial infarction in each group was measured. The pathological morphology of the myocardial tissue was observed by hematoxylin-eosin(HE) staining. The apoptosis in the myocardial tissue was observed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL). Enzyme-linked immunosorbent assay(ELISA) was employed to measure the le-vels of indicators of myocardial injury and oxidative stress. The level of ROS was detected by flow cytometry. The protein and mRNA levels of the related proteins in the myocardial tissue were determined by Western blot and real-time quantitative PCR(RT-qPCR), respectively. Compared with the sham group, the model group showed obvious myocardial infarction, myocardial structural disorders, interstitial edema and hemorrhage, presence of a large number of vacuoles, elevated levels of myocardial injury markers, myocardial apoptosis, ROS, and malondialdehyde(MDA), lowered superoxide dismutase(SOD) level, and up-regulated protein and mRNA le-vels of PKCßⅡ, NOX2, cysteinyl aspartate specific proteinase-3(caspase-3), and acyl-CoA synthetase long-chain family member 4(ACSL4) in the myocardial tissue. Compared with the model group, Chaihu Sanshen Capsules reduced the area of myocardial infarction, alleviated the pathological changes in the myocardial tissue, lowered the levels of myocardial injury and oxidative stress indicators and apoptosis, and down-regulated the mRNA and protein levels of PKCßⅡ, NOX2, caspase-3, and ACSL4 in the myocardial tissue. Chaihu Sanshen Capsules can inhibit oxidative stress and programmed cell death(apoptosis, ferroptosis) by regulating the PKCßⅡ/NOX2/ROS signaling pathway, thus mitigating myocardial ischemia reperfusion injury.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/genética , Espécies Reativas de Oxigênio , Ratos Sprague-Dawley , Caspase 3/metabolismo , Transdução de Sinais , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/genética , RNA Mensageiro , Apoptose
12.
Cancer Med ; 13(5): e7015, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38491808

RESUMO

BACKGROUND: Gastric cardia adenocarcinoma (GCA) is classified as Siewert type II adenocarcinoma at the esophagogastric junction in Western countries. The majority of GCA patients do not exhibit early warning symptoms, leading to over 90% of diagnoses at an advanced stage, resulting in a grim prognosis, with less than a 20% 5-year survival rate. METHOD: Metabolic features of 276 GCA and 588 healthy controls were characterized through a widely-targeted metabolomics by UPLC-MS/MS analysis. This study encompasses a joint pathway analysis utilizing identified metabolites, survival analysis in both early and advanced stages, as well as high and negative and low expression of HER2 immunohistochemistry staining. Machine learning techniques and Cox regression models were employed to construct a diagnostic panel. RESULTS: A total of 25 differential metabolites were consistently identified in both discovery and validation sets based on criteria of p < 0.05, (VIP) ≥ 1, and FC ≥ 2 or FC ≤ 0.5. Early-stage GCA patients exhibited a more favorable prognosis compared to those in advanced stages. HER2 overexpression was associated with a more positive outcome compared to the negative and low expression groups. Metabolite panel demonstrated a robust diagnostic performance with AUC of 0.869 in discovery set and 0.900 in validation set. CONCLUSIONS: A total of 25 common and stable differential metabolites may hold promise as liquid non-invasive indicators for GCA diagnosis. HER2 may function as a tumor suppressor gene in GCA, as its overexpression is associated with improved survival. The downregulation of bile acid metabolism in GCA may offer valuable theoretical insights and innovative approaches for precision-targeted treatments in GCA patients.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Cárdia/patologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Neoplasias Gástricas/patologia , Adenocarcinoma/patologia , Biomarcadores
13.
Chaos ; 34(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38502966

RESUMO

In this paper, we focus on the localized rational waves of the variable-coefficient Heisenberg spin chain equation, which models the local magnetization in ferromagnet with time-dependent inhomogeneous bilinear interaction and spin-transfer torque. First, we establish the iterative generalized (m,N-m)-fold Darboux transformation of the Heisenberg spin chain equation. Then, the novel localized rational solutions (LRSs), rogue waves (RWs), periodic waves, and hybrid wave structures on the periodic, zero, and nonzero constant backgrounds with the time-dependent coefficients α(t) and ß(t) are obtained explicitly. Additionally, we provide the trajectory curves of magnetization and the variation of the magnetization direction for the obtained nonlinear waves at different times. These phenomena imply that the LRSs and RWs play the crucial roles in changing the circular motion of the magnetization. Finally, we also numerically simulate the wave propagations of some localized semi-rational solutions and RWs.

14.
Per Med ; 21(2): 89-102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38501284

RESUMO

Aim: Steroid-induced osteonecrosis of the femoral head (SONFH) is a severe complication following glucocorticoid therapy. This study aimed to identify the differential mRNA expression and investigate the molecular mechanisms of SONFH. Materials & methods: RNA sequencing was performed in eight SONFH patients, five non-SONFH patients and five healthy individuals. Results: A total of 1555, 3997 and 5276 differentially expressed mRNAs existed between the following combinations: SONFH versus non-SONFH, SONFH versus healthy subjects and non-SONFH versus healthy subjects. Increased ISM1 expression might contribute to a high risk of SONFH through antiangiogenesis. Decreased FOLR3 expression might affect the metabolism of homocysteine, leading to avascular necrosis of the femoral head. KCNJ2, which plays a pivotal role in regulating bone development, was also deregulated. Conclusion: ISM1, FOLR3 and KCNJ2 might be related to the occurrence of SONFH.


[Box: see text].


Assuntos
Necrose da Cabeça do Fêmur , Perfilação da Expressão Gênica , Humanos , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/genética , Masculino , Feminino , Pessoa de Meia-Idade , Perfilação da Expressão Gênica/métodos , Adulto , Canais de Potássio Corretores do Fluxo de Internalização/genética , Glucocorticoides/efeitos adversos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estudos de Casos e Controles , Cabeça do Fêmur/patologia , Osteonecrose/induzido quimicamente , Osteonecrose/genética , Esteroides/efeitos adversos
15.
J Psychiatry Neurosci ; 49(1): E23-E34, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38302136

RESUMO

BACKGROUND: Depression is a prevalent nonmotor symptom in Parkinson disease and can greatly reduce the quality of life for patients; the dopamine receptors found in glutamatergic pyramidal cells in the medial prefrontal cortex (mPFC) play a role in regulating local field activity, which in turn affects behavioural and mood disorders. Given research showing that glial cell-derived neurotrophic factor (GDNF) may have an antidepressant effect, we sought to evaluate the impact of exogenous GDNF on depression-like behaviour in mouse models of Parkinson disease. METHODS: We used an established subacute model of Parkinson disease in mice involving intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), followed by brain stereotaxic injection of GDNF into the mPFC region. Subsequently, we assessed depression-like behaviour using the sucrose preference test, forced swimming test and tail suspension test, while also evaluating protein expression in the mPFC. RESULTS: We included 60 mice, divided into 3 groups, including a control group (saline injection), an MPTP plus saline injection group and an MPTP plus GDNF injection group. We found that exogenous GDNF injection into the mPFC led to an increase in dopamine receptor D1 (DRD1) protein levels. We also observed that activating the protein kinase A pathway through DRD1 produced a prolonged antidepressant response. Under GDNF stimulation, the expression of dopamine receptor D2 (DRD2) remained constant, suggesting that the DRD2 signal was ineffective in alleviating depression-like symptoms. Moreover, our investigation involved Golgi staining and Western blot techniques, which found enhanced synaptic plasticity, including increased dendritic branches, dendritic spines and retrograde protection after GDNF treatment in Parkinson disease models. LIMITATIONS: A subtle motor phenotype became evident only toward the conclusion of the behavioural testing period. The study exclusively involved male mice, and no separate control group receiving only GDNF treatment was included in the experimental design. CONCLUSION: Our findings support a positive effect of exogenous GDNF on synaptic plasticity, mediated by DRD1 signalling in the mPFC, which could facilitate depression remission in Parkinson disease.


Assuntos
Doença de Parkinson , Humanos , Masculino , Camundongos , Animais , Doença de Parkinson/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Depressão/tratamento farmacológico , Qualidade de Vida , Córtex Pré-Frontal/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Modelos Animais de Doenças
16.
Int J Biol Macromol ; 262(Pt 2): 130152, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365143

RESUMO

Supplementing probiotics or indigestible carbohydrates is a usual strategy to prevent or revert unhealthy states of the gut by reshaping gut microbiota. One criterion that probiotics are efficacious is the capacity to survive in the gastrointestinal tract. Biofilm is the common growth mode of microorganisms with high tolerances toward harsh environments. Suitable scaffolds are crucial for successful biofilm culture and large-scale production of biofilm-phenotype probiotics. However, the role of scaffolds containing indigestible carbohydrates in biofilm formation has not been studied. In this study, porous zein/cellulose composite scaffolds provided nitrogen sources and carbon sources simultaneously at the solid/liquid interfaces, being beneficial to the biofilm formation of Lactobacillus reuteri. The biofilms showed 2.1-17.4 times higher tolerances in different gastrointestinal conditions. In human fecal fermentation, the biofilms combined with the zein/cellulose composite scaffolds act as the "synbiotics" positively modulating the gut microbiota and the short-chain fatty acids (SCFAs), where biofilms provide probiotics and scaffolds provide prebiotics. The "synbiotics" show a more positive regulation ability than planktonic L. reuteri, presenting potential applications in gut health interventions. These results provide an understanding of the synergistic effects of biofilm-phenotype probiotics and indigestible carbohydrates contained in the "synbiotics" in gut microbiota modulation.


Assuntos
Microbioma Gastrointestinal , Limosilactobacillus reuteri , Probióticos , Simbióticos , Zeína , Humanos , Celulose , Porosidade , Prebióticos , Carboidratos , Biofilmes
17.
Sensors (Basel) ; 24(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38339522

RESUMO

An inertial sensor is a crucial payload in China's Taiji program for space gravitational wave detection. The performance of the capacitive displacement sensing circuit in the low-frequency band (0.1 mHz to 1 Hz) is extremely important because it directly determines the sensitivity of the space gravitational wave detection missions. Therefore, significant, yet challenging, tasks include decreasing the low-frequency noise in capacitive displacement sensing circuits and improving the capacitive sensing resolution. This study analyzes the noise characteristics of the pre-amplifier circuit within the capacitive sensing circuit, achieves precise tuning of the transformer bridge, and examines how transformer parameters affect noise. In addition, this study introduces a method using a discrete JFET to reduce the operational amplifier current noise and analyzes how feedback resistance and capacitance in TIA circuits affect the overall circuit noise. The proportional relationship between different transformer noises and TIA noise before and after optimization was analyzed and experimentally verified. Finally, an optimized TIA circuit and a superior transformer were utilized to achieve an increase in the capacitive sensing resolution from 1.095 aF/rtHz @ 10 mHz to 0.84 aF/rtHz @ 10 mHz, while improving the performance by 23%. These findings provide valuable insights into further decreasing circuit noise and increasing the capacitive sensing resolution.

18.
Bioorg Chem ; 143: 107020, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176374

RESUMO

Abnormally high levels of copper in tumors stimulate malignant proliferation and migration of cancer cells, which proposes a formidable challenge for the thorough therapy of malignant tumors. In this work, we developed a reliable, mitochondria-targeted near-infrared aggregation-induced emission fluorescent probe, TTQ-Th, whose thiourea moiety specifically could recognize mitochondria even both upon loss of mitochondrial membrane potential or in fixated cells, and can capture copper overexpressed by tumor cells, leading to severe copper deficiency. In parallel, TTQ-Th can generate sufficient reactive oxygen species (ROS) upon photoexcitation, while copper deficiency inhibits expression of related copper-based enzymes, resulting in a decline in ATP production. Such energy deficiency, combined with reduced MMP and elevated oxidative stress can lead to critical cell oncosis. Both in vitro and intracellular experiments can illustrate that the elevated ROS has remarkable damage to tumor cells and contributes to the elimination of the primary tumor, while copper deficiency further hinder tumor cell migration and induces G0/G1 cell cycle arrest in a dose-dependent manner, which is an efficacious strategy for the treatment of malignant tumors.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Cobre/farmacologia , Cobre/metabolismo , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico
19.
CNS Neurosci Ther ; 30(3): e14461, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37718594

RESUMO

AIM: Aberrations in brain connections are implicated in the pathogenesis of Parkinson's disease (PD). We previously demonstrated that Glial cell-derived neurotrophic factor (GDNF) reduction is associated with cognition decline. Nonetheless, it is elusive if the pattern of brain topological connectivity differed across PD with divergent serum GDNF levels, and the accompanying profile of cognitive deficits has yet to be determined. METHODS: We collected data on the participants' cognition, demographics, and serum GDNF levels. Participants underwent 3.0T magnetic resonance imaging, and we assessed the degree centrality, brain network topology, and cortical thickness of the healthy control (HC) (n = 25), PD-high-GDNF (n = 19), and PD-low-GDNF (n = 19) groups using graph-theoretic measures of resting-state functional MRI to reveal how much brain connectivity varies and its clinical correlates, as well as to determine factors predicting the cognitive status in PD. RESULTS: The results show different network properties between groups. Degree centrality abnormalities were found in the right inferior frontal gyrus and right parietal lobe postcentral gyrus, linked with cognition scores. The two aberrant clusters serve as a potentially powerful signal for determining whether a patient has PD and the patient's cognition level after integrating with GDNF, duration, and dopamine dosage. Moreover, we found a significant positive relationship between the thickness of the left caudal middle frontal lobe and a plethora of cognitive domains. Further discriminant analysis revealed that the cortical thickness of this region could distinguish PD patients from healthy controls. The mental state evaluation will also be more precise when paired with GDNF and duration. CONCLUSION: Our findings reveal that the topological features of brain networks and cortical thickness are altered in PD patients with cognitive deficits. The above change, accompanied by the serum GDNF, may have merit as a diagnosis marker for PD and, arguably, cognition status.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Humanos , Encéfalo/patologia , Cognição , Disfunção Cognitiva/patologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Imageamento por Ressonância Magnética/métodos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia
20.
Neural Regen Res ; 19(8): 1759-1767, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103242

RESUMO

Parkinson's disease can affect not only motor functions but also cognitive abilities, leading to cognitive impairment. One common issue in Parkinson's disease with cognitive dysfunction is the difficulty in executive functioning. Executive functions help us plan, organize, and control our actions based on our goals. The brain area responsible for executive functions is called the prefrontal cortex. It acts as the command center for the brain, especially when it comes to regulating executive functions. The role of the prefrontal cortex in cognitive processes is influenced by a chemical messenger called dopamine. However, little is known about how dopamine affects the cognitive functions of patients with Parkinson's disease. In this article, the authors review the latest research on this topic. They start by looking at how the dopaminergic system, is altered in Parkinson's disease with executive dysfunction. Then, they explore how these changes in dopamine impact the synaptic structure, electrical activity, and connection components of the prefrontal cortex. The authors also summarize the relationship between Parkinson's disease and dopamine-related cognitive issues. This information may offer valuable insights and directions for further research and improvement in the clinical treatment of cognitive impairment in Parkinson's disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...