Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 126(41): 8338-8349, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36219821

RESUMO

Block copolymers have attracted considerable interest in the fields of nanoscience and nanotechnology because these polymers afford well-defined nanostructures via self-assembly. An in-depth understanding of solvent effects on the physicochemical properties of these microdomains is crucial for their preparation and utilization. Herein, we employed in situ spectroscopic ellipsometry and single-molecule fluorescence techniques to gain detailed insights into microdomain properties in polystyrene-block-poly(ethylene oxide) (PS-b-PEO) films exposed to ethanol- and water-saturated N2. We observed a quick increase and a subsequent gradual decrease in the ellipsometric thickness of PS-b-PEO films upon exposure to ethanol-saturated N2. This observation was unexpected because ethanol-saturated N2 induced negligible thickness change for PS and PEO homopolymer films. The similarity in maximum thickness gain observed under ethanol- and water-saturated N2 implied the swelling of PEO microdomains. Ethanol vapor permeation through the PEO microdomains was supported by the redshift of the ensemble and single-molecule fluorescence emission of Nile red in PS-b-PEO films. Single-molecule tracking data showed the initial enhancement and subsequent reduction of the diffusion of hydrophilic sulforhodamine B molecules in PS-b-PEO films upon exposure to ethanol-saturated N2, consistent with the spectroscopic ellipsometry results. The higher ethanol susceptibility of the PEO microdomains was attributable to their amorphous nature, as shown by FTIR data.


Assuntos
Óxido de Etileno , Poliestirenos , Poliestirenos/química , Solventes , Polímeros/química , Água , Etanol , Microscopia de Fluorescência
2.
J Fluoresc ; 32(5): 1779-1787, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35689743

RESUMO

Fluorescence correlation spectroscopy (FCS) has been widely used to investigate molecular diffusion behavior in various samples. The use of the maximum entropy method (MEM) for FCS data analysis provides a unique means to determine multiple distinct diffusion coefficients without a priori assumption of their number. Comparison of the MEM-based FCS method (MEM-FCS) with another method will reveal its utility and advantage as an analytical tool to investigate diffusion dynamics. Herein, we measured diffusion of fluorescent probes doped into nanostructured thin films using MEM-FCS, and validated the results with single molecule tracking (SMT) data. The efficacy of the MEM code employed was first demonstrated by analyzing simulated FCS data for systems incorporating one and two diffusion modes with broadly distributed diffusion coefficients. The MEM analysis accurately afforded the number of distinct diffusion modes and their mean diffusion coefficients. These results contrasted with those obtained by fitting the simulated data to conventional two-component and anomalous diffusion models, which yielded inaccurate estimates of the diffusion coefficients. Subsequently, the MEM analysis was applied to FCS data acquired from hydrophilic dye molecules incorporated into microphase-separated polystyrene-block-poly(ethylene oxide) (PS-b-PEO) thin films characterized under a water-saturated N2 atmosphere. The MEM analysis revealed distinct fast and slow diffusion components attributable to molecules diffusing on the film surface and inside the film, respectively. SMT studies of the same materials yielded trajectories for mobile molecules that appear to follow the curved PEO microdomains. Diffusion coefficients obtained from the SMT data were consistent with those obtained for the slow diffusion component detected by MEM-FCS. These results highlight the utility of MEM-FCS and SMT for gaining complementary information on molecular diffusion processes in heterogeneous material systems.

3.
ACS Nano ; 16(2): 2756-2761, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35099926

RESUMO

The presence of metastable Bernal stacking boron nitride is verified by combining second harmonic generation (SHG) and photoluminescence (PL) spectroscopy. The scanning confocal cryomicroscope, operating in the deep-ultraviolet range, shows a one-to-one correlation between inversion symmetry breaking probed by SHG and the detection of an intense PL line at ∼6.035 eV, the specific signature of the noncentrosymmetric Bernal stacking. The coherent character of the Bernal phase in boron nitride crystals is demonstrated by two-photon excitation spectroscopy. Direct and indirect excitons are simultaneously detected in the emission spectrum; they are quasi-degenerate, in agreement with theoretical predictions for Bernal boron nitride. The transition from AA' to AB stacking is characterized by an intense emission from stacking faults at the grain boundaries of hexagonal and Bernal boron nitride crystals.

4.
Phys Chem Chem Phys ; 20(41): 26558-26569, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30306995

RESUMO

A comparative study of the intermolecular dynamics of CS2 in monocationic and dicationic ionic liquids (ILs) was performed using optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES). The reduced spectral densities (RSDs) of mixtures of CS2 in 1-alkyl-3-methylimidazolium bis[(trifluoromethane)sulfonyl]amide ([CnC1im][NTf2] for n = 3-5) and 1,2n-bis(3-methylimidazolium-1-yl) alkane bis[(trifluoromethane)sulfonyl]amide ([(C1im)2C2n][NTf2]2 for n = 3-5) were investigated as a function of concentration at 295 K. An additivity model was used to obtain the CS2 contribution to the RSD of a mixture in the 0-200 cm-1 region. One of the aims of this study is to show how CS2 can be used as a probe of intermolecular/interionic interactions in ILs. The concentrations were chosen such that the CS2-to-imidazolium ring mole fraction of a mixture with [(C1im)2C2n][NTf2]2 (DIL(2n)) is the same as that of a mixture with [CnC1im][NTf2] (MIL(n)). As found previously for CS2 in monocationic ILs, the intermolecular spectrum of CS2 in dicationic ILs is lower in frequency and narrower than that of neat CS2. The new result is that the intermolecular spectrum of CS2 is higher in frequency in DIL(2n) than in the corresponding MIL(n), indicating that CS2 molecules experience a stiffer potential in dicationic ILs than in monocationic ILs. The intermolecular dynamics of CS2 being higher in frequency in DIL(2n) than in MIL(n) is consistent with recent molecular dynamics simulations (Lynden-Bell and Quitevis, J. Chem. Phys., 2018, 148, 193844) that show the stiffer potential is the result of greater confinement of CS2 in DIL(2n) than in MIL(n). We also show in this study how effects due to dilution and the intermolecular potential seen by a solute molecule in solution are unraveled.

5.
J Phys Chem B ; 122(8): 2414-2424, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29397725

RESUMO

Atomistically detailed molecular dynamics simulations were used to investigate the temperature dependence of the specific volume, dynamic properties, and viscosity of linear alkyl chain ([CnC1Im][NTf2], n = 3-7) and branched alkyl chain ([(n - 2)mCn-1C1Im][NTf2]) ionic liquids (ILs). The trend of the glass transition temperature (Tg) values obtained in the simulations as a function of the alkyl chain length of cations was similar to the trend seen in experiments. In addition, the system relaxation behavior as determined from the temperature dependence of the diffusion coefficient, rotational relaxation time, and viscosity close to Tg was observed to follow the Vogel-Fulcher-Tammann expression. Furthermore, the reciprocal of the diffusion coefficient of the anion and cation in both linear and branched IL systems showed a linear correlation with viscosity, thus confirming the validity of the Stokes-Einstein relationship for these systems. Similarly, the average rotational relaxation time of the ions was also found to correlate linearly with the viscosity of the ILs over a wide range of temperatures, thereby validating the Debye-Stokes-Einstein relationship for the ILs. These simulation findings suggest that the temperature dependence of the relaxation time of ILs is very similar to that of other glass-forming liquids.

6.
Phys Chem Chem Phys ; 19(6): 4661-4672, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28124692

RESUMO

This article describes a comparative study of the low-frequency (0-450 cm-1) Kerr spectra of the branched 1-(iso-alkyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([(N - 2)mCN-1C1im][NTf2] with N = 3-7) ionic liquids (ILs) and that of the linear 1-(n-alkyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([CNC1im][NTf2] with N = 2-7) ILs. The spectra were obtained by use of femtosecond optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES). The intermolecular spectrum of a branched IL is similar to that of a linear IL that is of the same alkyl chain length rather than of the same number of carbon atoms in the alkyl chain. This similarity and the lack of a correlation of the first spectral moments and widths of the intermolecular spectra with chain length is mainly attributed to the increase in the dispersion contribution to the total molar cohesive energy being compensated by stretching of the ionic network due to the increasing size of the nonpolar domains, which is dependent only on the length of the alkyl chain.

7.
J Phys Chem B ; 119(47): 14934-44, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26505274

RESUMO

A series of branched ionic liquids (ILs) based on the 1-(iso-alkyl)-3-methylimidazolium cation from 1-(1-methylethyl)-3-methylimidazolium bistriflimide to 1-(5-methylhexyl)-3-methylimidazolium bistriflimide and linear ILs based on the 1-(n-alkyl)-3-methylimidazolium cation from 1-propyl-3-methylimidazolium bistriflimide to 1-heptyl-3-methylimidazolum bistriflimide were recently synthesized and their physicochemical properties characterized. For the ILs with the same number of carbons in the alkyl chain, the branched IL was found to have the same density but higher viscosity than the linear one. In addition, the branched IL 1-(2-methylpropyl)-3-methylimidazolium bistriflimide ([2mC3C1Im][NTf2]) was found to have an abnormally high viscosity. Motivated by these experimental observations, the same ILs were studied using molecular dynamics (MD) simulations in the current work. The viscosities of each IL were calculated using the equilibrium MD method at 400 K and the nonequilibrium MD method at 298 K. The results agree with the experimental trend. The ion pair (IP) lifetime, spatial distribution function, and associated potential of mean force, cation size and shape, and interaction energy components were calculated from MD simulations. A quantitative correlation between the liquid structure and the viscosity was observed. Analysis shows that the higher viscosities in the branched ILs are due to the relatively more stable packing between the cations and anions indicated by the lower minima in the potential of mean force (PMF) surface. The abnormal viscosity of [2mC3C1Im][NTf2] was found to be the result of the specific side chain length and molecular structure.

8.
Phys Chem Chem Phys ; 17(15): 9973-83, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25783621

RESUMO

The principal difference between 1-benzyl-3-methyl-imidazolium triflimide [BzC1im][NTf2] and an equimolar mixture of benzene and dimethylimidazolium triflimide [C1C1im][NTf2] is that in the former the benzene moieties are tied to the imidazolium ring, while in the latter they move independently. We use femtosecond optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES) and molecular simulations to explore some properties of these two systems. The Kerr spectra show small differences in the spectral densities; the simulations also show very similar environments for both the imidazolium rings and the phenyl or benzene parts of the molecules. The low frequency vibrational densities of states are also similar in the model systems. In order to perform the simulations we developed a model for the [BzC1im](+) cation and found that the barriers to rotation of the two parts of the molecule are low.

9.
J Chem Phys ; 141(4): 044506, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25084925

RESUMO

The local structure and intermolecular dynamics of an equimolar mixture of benzene and 1,3-dimethylimidazolium bis[(trifluoromethane)sulfonyl]amide ([dmim][NTf2]) were studied using molecular dynamics (MD) simulations and femtosecond optical Kerr effect (OKE) spectroscopy. The OKE spectrum of the benzene/[dmim][NTf2] mixture at 295 K was analyzed by comparing it to an ideal mixture spectrum obtained by taking the volume-fraction weighted sum of the OKE spectra of the pure liquids. The experimental mixture spectrum is higher in frequency and broader than that of the ideal mixture spectrum. These spectral differences are rationalized in terms of the local structure around benzene molecules in the mixture and the intermolecular dynamics as reflected in the density of states from the MD simulations. Specifically, we attribute the deviation of the OKE spectrum of the mixture from ideal behavior to benzene molecules seeing a stiffer intermolecular potential due to their being trapped in cages comprised of ions in the first solvation shell.

10.
J Chem Phys ; 140(16): 164512, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24784292

RESUMO

The intermolecular dynamics of dilute solutions of CS2 in 1-alkyl-3-methylimidazolium bis[(trifluoromethane)sulfonyl]amide ([CnC1im][NTf2] for n = 1-4) were studied at 295 K using femtosecond optical Kerr effect (OKE) spectroscopy. The OKE spectra of the CS2/ionic liquid (IL) mixtures were analyzed using an additivity model to obtain the CS2 contribution to the OKE spectrum from which information about the intermolecular modes of CS2 in these mixtures was gleaned. The intermolecular spectrum of CS2 in these mixtures is lower in frequency and narrower than that of neat CS2, as found previously for CS2 in [C5C1im][NTf2]. Moreover, a dependence of the spectra on alkyl chain length is observed that is attributed to the interplay between electrostatic and dispersion interactions. The surprising result in this study is the solubility of CS2 in [C1C1im][NTf2], which involves the interaction of a nonpolar nonaromatic molecular solute and only the charged groups of the IL. We propose that the solubility of CS2 in [C1C1im][NTf2] is determined by three favorable factors - (1) large polarizability of the solute molecule; (2) small size of the solute molecule; and (3) low cohesive energy in the high-charge density regions of the IL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...