Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1329609, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260894

RESUMO

Introduction: Klebsiella pneumoniae (K. pneumoniae) is an important opportunistic and zoonotic pathogen which is associated with many diseases in humans and animals. However, the pathogenicity of K. pneumoniae has been neglected and the prevalence of K. pneumoniae is poorly studied due to the lack of rapid and sensitive diagnosis techniques. Methods: In this study, we infected mice and pigs with K. pneumoniae strain from a human patient. An indirect ELISA was established using the KHE protein as the coating protein for the detection of K. pneumoniae specific antibody in clinical samples. A nested PCR method to detect nuclei acids of K. pneumoniae was also developed. Results: We showed that infection with K. pneumoniae strain from a human patient led to mild lung injury of pigs. For the ELISA, the optimal coating concentration of KHE protein was 10 µg/mL. The optimal dilutions of serum samples and secondary antibody were 1:100 and 1:2500, respectively. The analytical sensitivity was 1:800, with no cross-reaction between the coated antigen and porcine serum positive for antibodies against other bacteria. The intra-assay and inter-assay reproducibility coefficients of variation are less than 10%. Detection of 920 clinical porcine serum samples revealed a high K. pneumoniae infection rate by established indirect ELISA (27.28%) and nested PCR (19.13%). Moreover, correlation analysis demonstrated infection rate is positively correlated with gross population, Gross Domestic Product (GDP), and domestic tourists. Discussion: In conclusion, K. pneumoniae is highly prevalent among pigs in China. Our study highlights the role of K. pneumoniae in pig health, which provides a reference for the prevention and control of diseases associated with K. pneumoniae.

2.
Acta Virol ; 65(3): 303-306, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34565158

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically significant pathogens in swine industry of China. To study infection and genetic variation of PRRSV, 637 tissue samples were collected from diseased pigs in Shandong, and then subjected to detection of PRRSV. The nsp2 and ORF5 genes were sequenced for investigation of variations and phylogenetic analysis. The results showed that positive rate of PRRSV was 9.58% in the collected samples. Phylogenetic analysis of GP5 showed that these strains were clustered into two lineages (1 and 8) indicating different genotypes of PRRSV were circulating in Shandong province. Meanwhile, sequence analysis Of nsp2 showed that the PRRSV strains with 30 amino acids deletions were dominant. Moreover, novel pattern of recombination/deletion and insertion in nsp2 was observed in these strains, indicating that novel PRRSV strains with different patterns of deletions or insertions in nsp2 are emerging in China. All the results suggested that continuous surveillance of PRRSV in China is warranted. Keywords: PRRSV; GP5; nsp2; genetic analysis; Shandong.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , China/epidemiologia , Variação Genética , Genótipo , Filogenia , Síndrome Respiratória e Reprodutiva Suína/epidemiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Suínos
3.
Transbound Emerg Dis ; 68(6): 3200-3206, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34359099

RESUMO

In January 2021, an outbreak of H5N8 subtype avian influenza was identified from wild mute swans (Cygnus olor) in an overwintering site located within Yellow River Delta Nature Reserve in Shandong, China, for the first time. We sequenced the hemagglutinin (HA) and neuraminidase (NA) genome segments of the virus, named A/mute swan/Shandong/1/2021 (H5N8), and explored the genetic characterization and comparative phylogenetic analysis to track its origin. The wild swans prior to death showed nervous signs accompanied by a twisted neck. The major pathological changes of the heart, lung, trachea, kidney, spleen, and glandular stomach were hemorrhage, and extensive necrotic lesions in the liver and pancreas were also observed. Further analysis of the HA and NA phylogenetic trees generated by H5N8 strains isolated worldwide revealed that the isolate has a close genetic relationship with the H5N8 subtype avian influenza virus (AIV) recently isolated in Korea and Japan from 2020 to 2021, suggesting the potential role of mute swans in the global dissemination of the H5N8 subtype AIVs along the migration routes. Therefore, enhanced active surveillance in wild and domestic birds is required to monitor the introduction and spread of the H5N8 subtype AIV by migratory birds in order to decrease the risk of H5N8 outbreaks.


Assuntos
Anseriformes , Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Animais , Animais Selvagens , China/epidemiologia , Surtos de Doenças/veterinária , Vírus da Influenza A Subtipo H5N8/genética , Influenza Aviária/epidemiologia , Filogenia
4.
ACS Omega ; 6(26): 17019-17026, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34250359

RESUMO

In this paper, a molecular sieve (VSiO2) prepared from modified vermiculite is used as a support, and a multilayer mesoporous catalyst, Ni-VSiO2, is prepared while the active components are loaded in one step by the precipitation method. The catalyst is further modified by adding additives Ca and Ce to prepare the catalyst Ni-5x-VSiO2 (x = Ce, Ca) and is used for the dry reforming of methane reaction. The catalyst is characterized by X-ray fluorescence, Brunauer-Emmett-Teller analysis, scanning electron microscopy, hydrogen temperature-programmed reduction test, transmission electron microscopy, thermogravimetric analysis, and other technical means. The result shows that under a normal pressure of 750 °C, the catalyst Ni-Ca-VSiO2 has good stability. The catalyst Ni-Ce-VSiO2 has good activity, stability and carbon deposition resistance, and the conversion rates of CO2 and CH4 are 88% and 78%, respectively. This is because the mesoporous structure allows Ni nanoparticles to enter the pores of the catalyst support, thereby inhibiting the aggregation of the active component Ni and improving its sintering resistance. CeO2 additives provide more oxygen vacancies to inhibit the formation of carbon deposits. At the same time, the strong interaction between the active component Ni and the additive CeO2 is also beneficial to improve its sintering resistance.

5.
Infect Genet Evol ; 90: 104770, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33588066

RESUMO

Rothia nasimurium is part of the commensal flora of humans and other animals and has recently received increasing attention for its multidrug-resistance (MDR) and pathogenicity. Currently, no systematic reports characterize the genetics, mechanisms, and dissemination risks of antibiotic resistance in MDR R. nasimurium. Here, we present the first report outlining a MDR strain of R. nasimurium, E1706032a, isolated from ducks exhibiting clinical sickness. Phylogenetic analysis indicates that E1706032a mostly likely originated in the commensal bacteria of Amazona aestiva in Florida. E1706032a is resistant to beta-lactams, aminoglycosides, macrolides, sulfonamides, fluoroquinolones, rifamycins, tetracyclines, lincosamides and chloramphenicol. Genetic sequences related to drug resistance were detected, including resistance genes (aac(6')-Ib, ant(3″)-Ia, sul1, dfrA7, erm(X)), efflux pumps (tetZ, qacEΔ1, cmx, phosphate ABC transporter ATP-binding protein), and resistance-related proteins (hydrolase of the metallo-beta-lactamase (MBLs), mycinamicin resistance protein (myrA), DNA-directed RNA polymerase subunit beta (rpoB) variants, etc). E1706032a carries an IS481-like element, IS5564 and IS6-like elements, and IS6100 along with several novel transposases of the IS3 family. E1706032a also carries the class 1 integron gene IntI1, which is downstream adjacent to the gene cassettes aac(6')-Ib, tetZ, dfrA27, ant(3″)-Ia, qacEΔ1, sul1, cmx and upstream adjacent to gene tnpA of IS6100. Genetic analysis suggests that E1706032a carries wide antibiotic resistance and dissemination potential through movable elements and thus has the potential to cause difficult-to-treat infections in animals and humans. The dissemination of E1706032a from parrots in Florida to ducks in eastern China indicates a cross-regional public health infection risk that should be evaluated for risk of global spreading.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Patos , Infecções por Bactérias Gram-Positivas/veterinária , Micrococcaceae/genética , Doenças das Aves Domésticas/microbiologia , Animais , China , Infecções por Bactérias Gram-Positivas/microbiologia
6.
J Virol ; 95(3)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33177197

RESUMO

Neuraminidase (NA) has multiple functions in the life cycle of influenza virus, especially in the late stage of virus replication. Both of hemagglutinin (HA) and NA are highly glycosylated proteins. N-linked glycosylation (NLG) of HA has been reported to contribute to immune escape and virulence of influenza viruses. However, the function of NLG of NA remains largely unclear. In this study, we found that NLG is critical for budding ability of NA. Tunicamycin treatment or NLG knockout significantly inhibited the budding of NA. Further studies showed that the NLG knockout caused attenuation of virus in vitro and in vivo Notably, the NLG at 219 position plays an important role in the budding, replication, and virulence of H1N1 influenza virus. To explore the underlying mechanism, the unfolded protein response (UPR) was determined in NLG knockout NA overexpressed cells, which showed that the mutant NA was mainly located in the endoplasmic reticulum (ER), the UPR markers BIP and p-eIF2α were upregulated, and XBP1 was downregulated. All the results indicated that NLG knockout NA was stacked in the ER and triggered UPR, which might shut down the budding process of NA. Overall, the study shed light on the function of NLG of NA in virus replication and budding.IMPORTANCE NA is a highly glycosylated protein. Nevertheless, how the NLG affects the function of NA protein remains largely unclear. In this study, we found that NLG plays important roles in budding and Neuraminidase activity of NA protein. Loss of NLG attenuated viral budding and replication. In particular, the 219 NLG site mutation significantly attenuated the replication and virulence of H1N1 influenza virus in vitro and in vivo, which suggested that NLG of NA protein is a novel virulence marker for influenza viruses.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/fisiologia , Neuraminidase/metabolismo , Infecções por Orthomyxoviridae/virologia , Proteínas Virais/metabolismo , Virulência , Replicação Viral , Animais , Cães , Feminino , Glicosilação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Neuraminidase/genética , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/patologia , Proteínas Virais/genética
7.
RSC Adv ; 11(52): 32955-32964, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35493585

RESUMO

In this paper, a simple method was used to rapidly prepare MOF-808 with a large specific surface area and high stability. Bi2S3 and MOF-808 were used to design and synthesize high-stability Bi2S3/MOF-808 nanocomposites, which were then used for the photocatalytic degradation of antibiotic tetracyclines. The performance test results showed that the 0.7-808 composite material had good photocatalytic degradation performance for tetracycline under visible-light irradiation, and the degradation rate reached 80.8%, which was 3.21 times and 1.76 times that of MOF-808 and Bi2S3, respectively. This was mainly due to the high photocurrent response and photoluminescence of the Bi2S3/MOF-808 composite material. Therefore, the close contact of n-n Bi2S3/MOF-808 can transfer light-generated electrons and holes to improve the utilization efficiency of photogenerated charges, thereby greatly improving the photocatalytic reaction activity. Particle-capture experiments and ESR confirmed that ˙OH was the main active substance in the photocatalytic degradation.

8.
Vet Microbiol ; 248: 108827, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32891955

RESUMO

Porcine epidemic diarrhea (PED) is a highly contagious intestinal infectious disease caused by porcine epidemic diarrhea virus (PEDV), which is characterized by a high mortality rate in piglets. Since 2012, a remarkable growth in PED outbreaks occurred in many pig farms in China, landing a heavy blow on the pig industry. In order to develop a new effective vaccine for the current PEDV, oral vaccines were generated by transferring eukaryotic expression recombinant plasmids carrying the S1 and S2 (antigenic sites of the S protein) epitopes of PEDV into a swine-origin Lactobacillus acidophilus (L. acidophilus). After oral immunization of the BALB/c mice, higher levels of anti-PEDV specific IgG and SIgA antibodies and cellular immune responses were detected in mice orally administered with the recombinant L. acidophilus-S1 compared to the L. acidophilus-S2. Furthermore, L. acidophilus-S1 was used to inoculate the pregnant sows orally and the results showed that the recombinant L. acidophilus-S1 could elicit a specific systemic and mucosal immune response. In summary, our study demonstrated that oral immunization with L. acidophilus-S1 could improve the humoral and mucosal immune levels in sows and would be a promising candidate vaccine against PEDV infection in piglets.


Assuntos
Anticorpos Antivirais/sangue , Imunidade Humoral , Imunidade nas Mucosas , Lactobacillus acidophilus/genética , Vírus da Diarreia Epidêmica Suína/imunologia , Vacinas Virais/imunologia , Administração Oral , Animais , Feminino , Imunização/veterinária , Camundongos , Camundongos Endogâmicos BALB C , Vírus da Diarreia Epidêmica Suína/genética , Gravidez , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Suínos , Proteínas Virais/administração & dosagem , Proteínas Virais/imunologia , Vacinas Virais/administração & dosagem
9.
Vet Microbiol ; 244: 108661, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32402346

RESUMO

Pigeon paramyxovirus type 1 (PPMV-1) is an antigenic variant of avian paramyxovirus type 1, which mainly infects pigeons. Here, we characterized ten PPMV-1 viruses isolated from pigeons in China during 1996-2019. Phylogenetic analysis of available complete genomes, F and HN genes of PPMV-1 from China showed that multiple PPMV-1 genotypes (I, II, VI, and VII) exist in pigeons in China. Ten PPMV-1 viruses isolated in this study belonged to genotypes VI.1.2.2.2, VI.2.1.1.2.1, VI.2.1.1.2.2 and VII respectively. Genotype VI is predominant in pigeons. VI.2.1.1.2.2 contains most recently isolated PPMV-1 viruses, suggesting that VI.2.1.1.2.2 is a prevalent genotype in pigeons in China. In vitro and in vivo studies showed that four representative viruses from genotypes VI.2.1.1.2.1 (TA14), VI.2.1.1.2.2 (SD19), VI.1.2.2.2 (SD16), and VII (JN08) could replicate efficiently in chicken embryo fibroblasts, while the replication titer of JN08 (VII) virus was significantly lower than that of VI gene viruses in pigeon embryo fibroblasts. The TA14 (VI.2.1.1.2.1) and SD19 (VI.2.1.1.2.2) viruses caused 20 % and 30 % mortality in pigeons, respectively. No birds infected with SD16 (VI.1.2.2.2) died during the study period. JN08 (VII) virus did not cause obvious clinical signs in infected pigeons. All data indicated that VI.2.1.1.2.2 is the prevalent genotype circulating in China and poses a major threat to pigeons, suggesting that a matched vaccine is necessary to control the disease.


Assuntos
Infecções por Avulavirus/veterinária , Avulavirus/classificação , Columbidae/virologia , Genoma Viral , Filogenia , Animais , Avulavirus/isolamento & purificação , Avulavirus/patogenicidade , Infecções por Avulavirus/mortalidade , Galinhas , China , Fibroblastos/virologia , Genótipo
10.
Vet Microbiol ; 232: 151-155, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31030840

RESUMO

Influenza virus-like sequences of H17N10 and H18N11 were identified in bats, despite there has been no live virus isolated. The genetic analysis indicated that they have distinct but relatively close evolutionary relationships to known influenza A viruses. However, the infectivity and adaptation of bat influenza viruses in avian species remain unclear. In this study, two modified bat influenza viruses cH9cN2/H17 and cH9cN2/H18 containing HA and NA coding regions replaced with those of H9N2 influenza A virus were generated in the background of the H17N10 or H18N11 viruses. These two modified viruses replicated less efficiently than wild type H9N2 virus in cultured chicken cells. The mini-genome assay showed that viral ribonucleoproteins (vRNPs) of H9N2 has significantly higher polymerase activity than that of bat influenza viruses in avian cells. In chicken study, compared with H9N2 virus, which replicated and transmitted efficiently in chickens, the cH9cN2/H17 and cH9cN2/H18 viruses only replicated in chicken tracheas with lower titers. Pathological examination showed that the H9N2 caused severer lesions in lung and trachea than the modified bat influenza viruses. Notably, the cH9cN2/H18 transmitted among chickens, but not cH9cN2/H17, and chicken IFN-ß antagonism results showed that H18N11 NS1 protein inhibited chicken IFN-ß response more efficiently than H17N10 NS1 protein in avian cells. Taken together, our data indicated that the internal genes of bat influenza viruses adapted poorly to chickens, while the internal genes of H18N11 seemed to adapt to chickens better than H17N10.


Assuntos
Adaptação Fisiológica/genética , Quimera/genética , Quirópteros/virologia , Vírus da Influenza A Subtipo H9N2/genética , Orthomyxoviridae/genética , Animais , Sequência de Bases , Galinhas/virologia , Hemaglutininas Virais/genética , Influenza Aviária/virologia , Neuraminidase/genética , Doenças das Aves Domésticas/virologia , Ribonucleoproteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...