Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nanoscale ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973493

RESUMO

The electrocatalytic nitrate reduction reaction (NO3RR) is an ideal NH3 synthesis route with ease of operation, high energy efficiency, and low environmental detriment. Electrocatalytic cathodes play a dominant role in the NO3RR. Herein, we constructed a carbon fiber paper-supported CuOx nanoarray catalyst (CP/CuOx) by an in situ electrochemical reconstruction method for NO3--to-NH3 conversion. A series of characterization techniques, such as X-ray diffraction (XRD) and in situ Raman spectroscopy, unveil that CP/CuOx is a polycrystalline-faceted composite copper nanocatalyst with a valence composition containing Cu0, Cu+ and Cu2+. CP/CuOx shows more efficient NO3--to-NH3 conversion than CP/Cu and CP/Cu2O, which indicates that the coexistence of various Cu valence states could play a dominant role. CP/CuOx with a suitable Cu2+ content obtained by adjusting the conductivity during the in situ electrochemical reconstruction process exhibited more than 90% faradaic efficiencies for the NO3RR in a broad range of -0.3 to -1.0 V vs. RHE, 28.65 mg cm-2 h-1 peak ammonia yield, and stable NO3RR efficiencies for ten cycles. These findings suggest that CP/CuOx with suitable copper valence states obtained by fine-tuning the conductivity of the electrochemical reconstruction may provide a competitive cathode catalyst for achieving excellent activity and selectivity of NO3--to-NH3 conversion.

2.
J Colloid Interface Sci ; 673: 113-133, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38875783

RESUMO

The demands of human life and industrial activities result in a significant influx of toxic contaminants into aquatic ecosystems. In particular, organic pollutants such as antibiotics and dye molecules, bacteria, and heavy metal ions are represented, posing a severe risk to the health and continued existence of living organisms. The method of removing pollutants from water bodies by utilizing the principle of the piezoelectric effect in combination with chemical catalytic processes is superior to other wastewater purification technologies because it can collect water energy, mechanical energy, etc. to achieve cleanliness and high removal efficiency. Herein, we briefly introduced the piezoelectric mechanisms and then reviewed the latest advances in the design and synthesis of piezoelectric materials, followed by a summary of applications based on the principle of piezoelectric effect to degrade pollutants in water for wastewater purification. Moreover, water purification technologies incorporating the piezoelectric effect, including piezoelectric effect-assisted membrane filtration, activation of persulfate, and battery electrocatalysis are elaborated. Finally, future challenges and research directions for the piezoelectric effect are proposed.

3.
Sci Bull (Beijing) ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38789326

RESUMO

The interplay between multi-atom assembly configurations and single atoms (SAs) has been gaining attention in research. However, the effect of long-term range interactions between SAs and multi-atom assemblies on the orbital filling characteristics has yet to be investigated. In this context, we introduced copper (Cu) doping to strengthen the interaction between cobalt (Co) nanoparticles (NPs) and Co SAs by promoting the spontaneous formation of Co-Cu alloy NPs that tends toward aggregation owing to its negative cohesive energy (-0.06454), instead of forming Cu SAs. The incorporation of Cu within the Co-Cu alloy NPs, compared to the pure Co NPs, significantly expedites the kinetics of peroxymonosulfate (PMS) oxidation processes on Co SAs. Unlike Co NPs, Co-Cu NPs facilitate electron rearrangement in the d orbitals (especially dz2 and dxz) near the Fermi level in Co SAs, thereby optimizing the dz2-O (PMS) and dxz-O (SO5-) orbital interaction. Eventually, the Co-Cu alloy NPs embedded in nitrogen-doped carbon (CC@CNC) catalysts rapidly eliminated 80.67% of 20 mg/L carbamazepine (CBZ) within 5 min. This performance significantly surpasses that of catalysts consisting solely of Co NPs in a similar matrix (C@CNC), which achieved a 58.99% reduction in 5 min. The quasi in situ characterization suggested that PMS acts as an electron donor and will transfer electrons to Co SAs, generating 1O2 for contaminant abatement. This study offers valuable insights into the mechanisms by which composite active sites formed through multi-atom assembly interact at the atomic orbital level to achieve high-efficiency PMS-based advanced oxidation processes at the atomic orbital level.

4.
Angew Chem Int Ed Engl ; 62(41): e202307504, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37345265

RESUMO

The past decade has witnessed the great potential of Fe-based single-atom electrocatalysis in catalyzing oxygen reduction reaction (ORR). However, it remains a grand challenge to substantially improve their intrinsic activity and long-term stability in acidic electrolytes. Herein, we report a facile chemical vapor deposition strategy, by which high-density Fe atoms (3.97 wt%) are coordinated with square-planar para-positioned nitrogen and phosphorus atoms in a hierarchical carbon framework. The as-crafted atomically dispersed Fe catalyst (denoted Fe-SA/PNC) manifests an outstanding activity towards ORR over the entire pH range. Specifically, the half-wave potential of 0.92 V, 0.83 V, and 0.86 V vs. reversible hydrogen electrode (RHE) are attained in alkaline, neutral, and acidic electrolytes, respectively, representing the high performance among reported catalysts to date. Furthermore, after 30,000 durability cycles, the Fe-SA/PNC remains to be stable with no visible performance decay when tested in 0.1 M KOH and 0.5 M H2 SO4 , and only a minor negative shift of 40 mV detected in 0.1 M HClO4 , significantly outperforming commercial Pt/C counterpart. The coordination motif of Fe-SA/PNC is validated by density functional theory (DFT) calculations. This work provides atomic-level insight into improving the activity and stability of non-noble metal ORR catalysts, opening up an avenue to craft the desired single-atom electrocatalysts.

5.
Proc Natl Acad Sci U S A ; 120(15): e2300281120, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011202

RESUMO

The performance optimization of isolated atomically dispersed metal active sites is critical but challenging. Here, TiO2@Fe species-N-C catalysts with Fe atomic clusters (ACs) and satellite Fe-N4 active sites were fabricated to initiate peroxymonosulfate (PMS) oxidation reaction. The AC-induced charge redistribution of single atoms (SAs) was verified, thus strengthening the interaction between SAs and PMS. In detail, the incorporation of ACs optimized the HSO5- oxidation and SO5·- desorption steps, accelerating the reaction progress. As a result, the Vis/TiFeAS/PMS system rapidly eliminated 90.81% of 45 mg/L tetracycline (TC) in 10 min. The reaction process characterization suggested that PMS as an electron donor would transfer electron to Fe species in TiFeAS, generating 1O2. Subsequently, the hVB+ can induce the generation of electron-deficient Fe species, promoting the reaction circulation. This work provides a strategy to construct catalysts with multiple atom assembly-enabled composite active sites for high-efficiency PMS-based advanced oxidation processes (AOPs).

6.
Angew Chem Int Ed Engl ; 61(34): e202206512, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35700228

RESUMO

Solid-state ionic conductors are compelling alternatives to liquid electrolytes in clean energy-harvesting and -storage technologies. The development of novel ionic conducting materials is one of the most critical challenges for next-generation energy technologies. Several advancements in design strategies, synthetic approaches, conducting properties, and underlying mechanisms for ionic conducting metal-organic frameworks (MOFs) have been made over the past five years; however, despite the recent, considerable expansion of related research fields, there remains a lack of systematic overviews. Here, an extensive introduction to ionic conducting performance for MOFs with different design strategies is provided, focusing primarily on ion mobility with the aid of hydrogen-bonding networks or solvated ionic charge. Furthermore, current theories on ion conducting mechanisms in different regimes are comprehensively summarized to provide an understanding of the underlying working principles in complex, realistic systems. Finally, challenges and future research directions at the forefront of ionic conducting MOF technologies are outlined.

7.
Bioresour Technol ; 294: 122170, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31561151

RESUMO

In this study, sulfamethoxazole served as the electron donor for microbial electrolysis cells. After 6 months of operation, the removal efficiencies of sulfamethoxazole in three microbial electrolysis cells were 77.60%, 87.55%, and 92.53% for a 3-day period and were directly proportional to the initial added concentrations. However, the removal efficiencies in the microbial electrolysis cells with open circuits and without microorganisms were only 51% and 8%, respectively. Higher sulfamethoxazole concentrations and sustained electrical stimulation caused faster bioelectrochemical reactions, thereby enhancing sulfamethoxazole degradation. Bacterial community analysis revealed that Proteobacteria and Synergistetes, which are the main functional phyla, proliferated with increased antibiotic concentrations. The qPCR results indicated that the copy numbers of antibiotic resistance genes and integrons in microbial electrolysis cell biofilms and effluents were distinctly lower than those in traditional biological treatment systems. Thus, the generation and dissemination of antibiotic resistance genes might be a diminished challenge in microbial electrolysis cells.


Assuntos
Antibacterianos , Sulfametoxazol , Bactérias , Resistência Microbiana a Medicamentos , Eletrólise , Águas Residuárias
8.
Bioresour Technol ; 289: 121632, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31228744

RESUMO

In this study, more than 85.1% of sulfamethoxazole (SMX) could be degraded within 60 h. The strengthening of microbial metabolisms and the sustainment of electrical stimulation contributed to the rapid removal of SMX in microbial fuel cells (MFCs). High-performance liquid chromatography identified that SMX could be thoroughly degraded into less harmful alcohols and methane after the MFC processing. In addition, the major role of Shewanella sp. and Geobacteria sp. in power generation, and the promotion of Alcaligenes, Pseudomonas and Achromobacter in SMX degradation have been demonstrated. Moreover, this study further proved that the copy numbers of targeted antibiotic resistance genes and integrons produced in MFCs were much lower than those found in conventional wastewater treatment plants; MFCs seem to be a promising alternative to reduce antibiotics in wastewater treatment and water purification.


Assuntos
Fontes de Energia Bioelétrica , Sulfametoxazol , Antibacterianos , Resistência Microbiana a Medicamentos , Águas Residuárias
9.
China Journal of Endoscopy ; (12): 46-50, 2017.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-668234

RESUMO

Objective To investigate the effect of laparoscopic ultrasonography assistance in minimally invasive surgery for uterine leiomyoma patients and provide scientific basis for reducing the recurrence rate of uterine leiomyoma. Methods 156 cases of uterine leiomyoma from January 2011 to June 2014 were divided into control group and observation group according to the digital table method, 78 cases in each. The control group were treated with conventional laparoscopic surgery, while the observation group with laparoscopic ultrasonography assistance, then compare the postoperative residue, recurrence in 12 months at different time points and the number of fibroids diameter, analyze the relationship between number of uterine muscle tumor and residual recurrence. Results There were no significant differences in operation time, blood loss, length of hospital stay and anal exhaust time between the two groups. The proportion of patients in the observation group and the recurrence rate within 12 months were significantly lower than those in the control group, the number of uterine leiomyomas in the observation group was significantly lower than that in the control group at 3 months, 6 months, 9 months and 12 months after operation. The patients in the two groups were followed up for 3 months and 6 months the maximum diameter of uterine leiomyoma was not statistically significant, the observation group 9 months and 12 months after the maximum diameter of uterine fibroids was significantly lower than the control group, and the difference was statistically significant; with the patient's uterine muscle the number of residual tumor and the recurrence rate were significantly increased. When the number of uterine leiomyomas was 10 or more, the residual rate was 100.0% and the recurrence rate was 80.0%. Conclusion Laparoscopic ultrasonography assistance in minimally invasive surgery for patients with uterine fibroids can effectively reduce the postoperative residual rate and recurrence rate, worthy of clinical promotion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...