Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Comput ; 36(7): 1286-1331, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38776965

RESUMO

In computational neuroscience, multicompartment models are among the most biophysically realistic representations of single neurons. Constructing such models usually involves the use of the patch-clamp technique to record somatic voltage signals under different experimental conditions. The experimental data are then used to fit the many parameters of the model. While patching of the soma is currently the gold-standard approach to build multicompartment models, several studies have also evidenced a richness of dynamics in dendritic and axonal sections. Recording from the soma alone makes it hard to observe and correctly parameterize the activity of nonsomatic compartments. In order to provide a richer set of data as input to multicompartment models, we here investigate the combination of somatic patch-clamp recordings with recordings of high-density microelectrode arrays (HD-MEAs). HD-MEAs enable the observation of extracellular potentials and neural activity of neuronal compartments at subcellular resolution. In this work, we introduce a novel framework to combine patch-clamp and HD-MEA data to construct multicompartment models. We first validate our method on a ground-truth model with known parameters and show that the use of features extracted from extracellular signals, in addition to intracellular ones, yields models enabling better fits than using intracellular features alone. We also demonstrate our procedure using experimental data by constructing cell models from in vitro cell cultures. The proposed multimodal fitting procedure has the potential to augment the modeling efforts of the computational neuroscience community and provide the field with neuronal models that are more realistic and can be better validated.


Assuntos
Microeletrodos , Modelos Neurológicos , Neurônios , Técnicas de Patch-Clamp , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Técnicas de Patch-Clamp/instrumentação , Animais , Potenciais de Ação/fisiologia , Simulação por Computador
2.
Nat Commun ; 14(1): 8177, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071198

RESUMO

Counteracting the overactivation of glucocorticoid receptors (GR) is an important therapeutic goal in stress-related psychiatry and beyond. The only clinically approved GR antagonist lacks selectivity and induces unwanted side effects. To complement existing tools of small-molecule-based inhibitors, we present a highly potent, catalytically-driven GR degrader, KH-103, based on proteolysis-targeting chimera technology. This selective degrader enables immediate and reversible GR depletion that is independent of genetic manipulation and circumvents transcriptional adaptations to inhibition. KH-103 achieves passive inhibition, preventing agonistic induction of gene expression, and significantly averts the GR's genomic effects compared to two currently available inhibitors. Application in primary-neuron cultures revealed the dependency of a glucocorticoid-induced increase in spontaneous calcium activity on GR. Finally, we present a proof of concept for application in vivo. KH-103 opens opportunities for a more lucid interpretation of GR functions with translational potential.


Assuntos
Glucocorticoides , Receptores de Glucocorticoides , Glucocorticoides/farmacologia , Receptores de Glucocorticoides/metabolismo
3.
Front Neuroinform ; 16: 957255, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36221258

RESUMO

Despite being composed of highly plastic neurons with extensive positive feedback, the nervous system maintains stable overall function. To keep activity within bounds, it relies on a set of negative feedback mechanisms that can induce stabilizing adjustments and that are collectively termed "homeostatic plasticity." Recently, a highly excitable microdomain, located at the proximal end of the axon-the axon initial segment (AIS)-was found to exhibit structural modifications in response to activity perturbations. Though AIS plasticity appears to serve a homeostatic purpose, many aspects governing its expression and its functional role in regulating neuronal excitability remain elusive. A central challenge in studying the phenomenon is the rich heterogeneity of its expression (distal/proximal relocation, shortening, lengthening) and the variability of its functional role. A potential solution is to track AISs of a large number of neurons over time and attempt to induce structural plasticity in them. To this end, a promising approach is to use extracellular electrophysiological readouts to track a large number of neurons at high spatiotemporal resolution by means of high-density microelectrode arrays (HD-MEAs). However, an analysis framework that reliably identifies specific activity signatures that uniquely map on to underlying microstructural changes is missing. In this study, we assessed the feasibility of such a task and used the distal relocation of the AIS as an exemplary problem. We used sophisticated computational models to systematically explore the relationship between incremental changes in AIS positions and the specific consequences observed in simulated extracellular field potentials. An ensemble of feature changes in the extracellular fields that reliably characterize AIS plasticity was identified. We trained models that could detect these signatures with remarkable accuracy. Based on these findings, we propose a hybrid analysis framework that could potentially enable high-throughput experimental studies of activity-dependent AIS plasticity using HD-MEAs.

4.
J Neural Eng ; 19(4)2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35931040

RESUMO

Objective: Techniques to identify monosynaptic connections between neurons have been vital for neuroscience research, facilitating important advancements concerning network topology, synaptic plasticity, and synaptic integration, among others.Approach: Here, we introduce a novel approach to identify and monitor monosynaptic connections using high-resolution dendritic spine Ca2+imaging combined with simultaneous large-scale recording of extracellular electrical activity by means of high-density microelectrode arrays.Main results: We introduce an easily adoptable analysis pipeline that associates the imaged spine with its presynaptic unit and test it onin vitrorecordings. The method is further validated and optimized by simulating synaptically-evoked spine Ca2+transients based on measured spike trains in order to obtain simulated ground-truth connections.Significance: The proposed approach offers unique advantages as (a) it can be used to identify monosynaptic connections with an accurate localization of the synapse within the dendritic tree, (b) it provides precise information of presynaptic spiking, and (c) postsynaptic spine Ca2+signals and, finally, (d) the non-invasive nature of the proposed method allows for long-term measurements. The analysis toolkit together with the rich data sets that were acquired are made publicly available for further exploration by the research community.


Assuntos
Espinhas Dendríticas , Sinapses , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia
5.
J Neural Eng ; 19(2)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35234667

RESUMO

Objective:Neurons communicate with each other by sending action potentials (APs) through their axons. The velocity of axonal signal propagation describes how fast electrical APs can travel. This velocity can be affected in a human brain by several pathologies, including multiple sclerosis, traumatic brain injury and channelopathies. High-density microelectrode arrays (HD-MEAs) provide unprecedented spatio-temporal resolution to extracellularly record neural electrical activity. The high density of the recording electrodes enables to image the activity of individual neurons down to subcellular resolution, which includes the propagation of axonal signals. However, axon reconstruction, to date, mainly relies on manual approaches to select the electrodes and channels that seemingly record the signals along a specific axon, while an automated approach to track multiple axonal branches in extracellular action-potential recordings is still missing.Approach:In this article, we propose a fully automated approach to reconstruct axons from extracellular electrical-potential landscapes, so-called 'electrical footprints' of neurons. After an initial electrode and channel selection, the proposed method first constructs a graph based on the voltage signal amplitudes and latencies. Then, the graph is interrogated to extract possible axonal branches. Finally, the axonal branches are pruned, and axonal action-potential propagation velocities are computed.Main results:We first validate our method using simulated data from detailed reconstructions of neurons, showing that our approach is capable of accurately reconstructing axonal branches. We then apply the reconstruction algorithm to experimental recordings of HD-MEAs and show that it can be used to determine axonal morphologies and signal-propagation velocities at high throughput.Significance:We introduce a fully automated method to reconstruct axonal branches and estimate axonal action-potential propagation velocities using HD-MEA recordings. Our method yields highly reliable and reproducible velocity estimations, which constitute an important electrophysiological feature of neuronal preparations.


Assuntos
Axônios , Neurônios , Potenciais de Ação/fisiologia , Axônios/fisiologia , Encéfalo/fisiologia , Humanos , Microeletrodos , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...